Advertisement

Continuum Approximations to Systems of Correlated Interacting Particles

  • Leonid Berlyand
  • Robert Creese
  • Pierre-Emmanuel Jabin
  • Mykhailo Potomkin
Article

Abstract

We consider a system of interacting particles with random initial conditions. Continuum approximations of the system, based on truncations of the BBGKY hierarchy, are described and simulated for various initial distributions and types of interaction. Specifically, we compare the mean field approximation (MFA), the Kirkwood superposition approximation (KSA), and a recently developed truncation of the BBGKY hierarchy (the truncation approximation—TA). We show that KSA and TA perform more accurately than MFA in capturing approximate distributions (histograms) obtained from Monte Carlo simulations. Furthermore, TA is more numerically stable and less computationally expensive than KSA.

Keywords

Many particle system Mean field approximation Closure of BBGKY hierarchy 

Notes

Acknowledgements

PEJ was partially supported by NSF Grant 1614537, and NSF Grant RNMS (Ki-Net) 1107444. LB and MP were supported by NSF DMREF Grant DMS-1628411.

References

  1. 1.
    Acebrón, J.A., Bonilla, L.L., Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Aldous, D.J.: Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5(1), 3–48 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Baker, R.E., Simpson, M.J.: Correcting mean-field approximations for birth-death-movement processes. Phys. Rev. E 82, 041905 (2010)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bazazi, S., Buhl, J., Hale, J.J., Anstey, M.L., Sword, G.A., Simpson, S.J., Couzin, I.D.: Collective motion and cannibalism in locust migratory bands. Curr. Biol. 18(10), 735–739 (2008)CrossRefGoogle Scholar
  5. 5.
    Berlyand, L., Jabin, P.-E., Potomkin, M.: Complexity reduction in many particle systems with random initial data. SIAM/ASA J. Uncertain. Quantif. 4(1), 446–474 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56(2), 101–113 (1977)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bolley, F., Guillin, A., Villani, C.: Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Relat. Fields 137(3–4), 541–593 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Budhiraja, A., Dupuis, P., Fischer, M.: Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. 40(1), 74–102 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bugaenko, N.N., Gorban’, A.N., Karlin, I.V.: Universal expansion of three-particle distribution function. Theor. Math. Phys. 88(3), 977–985 (1991)CrossRefGoogle Scholar
  10. 10.
    Cole, G.H.A.: Classical fluids and the superposition approximation. Rep. Prog. Phys. 31(2), 419 (1968)ADSCrossRefGoogle Scholar
  11. 11.
    Dawson, D.A., Gärtner, J.: Large deviations from the McKean–Vlasov limit for weakly interacting diffusions. Stochastics 20(4), 247–308 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dawson, D.A., Gärtner, J.: Multilevel large deviations and interacting diffusions. Probab. Theory Relat. Fields 98, 423–487 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dobrushin, R.L.: Vlasov equations. Funct. Anal. Appl. 13(2), 115–123 (1979)zbMATHCrossRefGoogle Scholar
  14. 14.
    Egelstaff, P.A., Page, D.I., Heard, C.R.T.: Experimental study of the triplet correlation function for simple liquids. J. Phys. C 4(12), 14–53 (1971)CrossRefGoogle Scholar
  15. 15.
    Gärtner, J.: On the McKean–Vlasov limit for interacting diffusions. Math. Nachr. 137, 197–248 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Goodman, J., Hou, T.Y.: New stability estimates for the 2-D vortex method. Commun. Pure Appl. Math. 44(8–9), 1015–1031 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulation. J. Comput. Phys. 73, 325–348 (1987)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Greengard, L., Rokhlin, V.: Rapid Evaluation of Potential Fields in Three Dimensions, in Vortex Methods, Lecture Notes in Mathematics, pp. 121–141. Springer, New York (1988)zbMATHGoogle Scholar
  19. 19.
    Greengard, L., Rokhlin, V.: On the evaluation of electrostatic interactions in molecular modeling. Chem. Scr. 29A, 139–144 (1989)Google Scholar
  20. 20.
    Jabin, P.-E.: A review of the mean field limits for Vlasov equations. Kinet. Relat. Models 7(4), 661–711 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Jabin, P.E., Wang, Z.: Mean Field Limit for Stochastic Particle Systems. Active Particles. Birkhäuser, Cham (2017)Google Scholar
  22. 22.
    Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, pp. 3, 171–197. University of California Press, Berkeley and Los Angeles (1956)Google Scholar
  23. 23.
    Kirkwood, J.G.: Statistical mechanics of fluid mixtures. J. Chem. Phys. 3, 300–313 (1935)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: International Symposium on Mathematical Problems in Theoretical Physics, pp. 420–422. Springer, Berlin (1975)Google Scholar
  25. 25.
    Leutheusser, E.: Dynamics of a classical hard-sphere gas I. Formal theory. J. Phys. C 15(13), 2827–2843 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    McKean Jr., H.P.: Propagation of Chaos for a Class of Non-linear Parabolic Equations. Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic University), pp. 41–57. Air Force Office of Scientific Research, Arlington (1967)Google Scholar
  27. 27.
    Méléard, S., Roelly-Coppoletta, S.: A propagation of chaos result for a system of particles with moderate interaction. Stoch. Process. Appl. 26, 317–332 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Middleton, A., Fleck, C., Grima, R.: A continuum approximation to an off-lattice individual-cell based model of cell migration and adhesion. J. Theor. Biol. 359, 220–232 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Morale, D., Capasso, V., Oelschläger, K.: An interacting particle system modeling aggregation behavior: from individuals to populations. J. Math. Biol. 50(1), 49–66 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34(1), 57 (1929)ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Motsch, S., Tadmor, E.: Heterophilious dynamics enhances consensus. SIAM Rev. 56(4), 577–621 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Nagy, M., Vásárhelyi, G., Pettit, B., Roberts-Mariani, I., Vicsek, T., Biro, D.: Context-dependent hierarchies in pigeons. Proc. Natl. Acad. Sci. USA 110, 13049–13054 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Newmann, T.J.: Modeling multicellular systems using subcellular elements. Math. Biosci. Eng. 2(3), 611–622 (2005)MathSciNetGoogle Scholar
  34. 34.
    Oelschlager, K.: A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Probab. 12, 458–479 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  36. 36.
    Rice, S.A., Lekner, J.: On the equation of state of the rigid-sphere fluid. J. Chem. Phys. 42(10), 3559–3565 (1965)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Romanczuk, P., Couzin, I.D., Schimansky-Geier, L.: Collective motion due to individual escape and pursuit response. Phys. Rev. Lett. 102(1), 010602 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Ryan, S.D., Haines, B.M., Berlyand, B.M., Ziebert, L., Aranson, F.: Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise. Phys. Rev. E 83, 050904(R) (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Ryan, S.D., Berlyand, L., Haines, B.M., Karpeev, D.: A kinetic model for semidilute bacterial suspensions. SIAM Multiscale Model. Simul. 11(4), 1176–1196 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Schiff, L.I.: Quantum Mechanics, vol. 3, pp. 61–62. McGraw-Hill, New York (1968)Google Scholar
  41. 41.
    Singer, A.: Maximum entropy formulation of the Kirkwood superposition approximation. J. Chem. Phys. 121, 36–57 (2004)CrossRefGoogle Scholar
  42. 42.
    Sokolov, A., Aranson, I.S.: Physical properties of collective motion in suspensions of bacteria. Phys. Rev. Lett. 109, 248109 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Sokolov, A., Aranson, I.S., Kessler, J.O., Goldstein, R.E.: Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98, 158102 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)zbMATHCrossRefGoogle Scholar
  45. 45.
    Sznitman, A.-S.: Topics in propagation of chaos, in École d’Été de Probabilités de Saint-Flour XIX - 1989. Lecture Notes in Mathematics, pp. 165–251. Berlin, Springer (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of MathematicsUniversity of MarylandCollege ParkUSA

Personalised recommendations