Advertisement

Journal of Statistical Physics

, Volume 174, Issue 3, pp 656–691 | Cite as

Homogenization for a Class of Generalized Langevin Equations with an Application to Thermophoresis

  • Soon Hoe LimEmail author
  • Jan Wehr
Article

Abstract

We study a class of systems whose dynamics are described by generalized Langevin equations with state-dependent coefficients. We find that in the limit, in which all the characteristic time scales vanish at the same rate, the position variable of the system converges to a homogenized process, described by an equation containing additional drift terms induced by the noise. The convergence results are obtained using the main result in Hottovy et al. (Commun Math Phys 336(3):1259–1283, 2015), whose version is proven here under a weaker spectral assumption on the damping matrix. We apply our results to study thermophoresis of a Brownian particle in a non-equilibrium heat bath.

Keywords

Generalized Langevin equation Small mass limit Multiscale analysis Noise-induced drift Thermophoresis 

Notes

Acknowledgements

The authors were partially supported by NSF grant DMS-1615045. S. Lim is grateful for the support provided by the Michael Tabor Fellowship from the Program in Applied Mathematics at the University of Arizona during the academic year 2017-2018. The authors learned the method of introducing additional variables to eliminate the memory term from E. Vanden-Eijnden. They would like to thank Maciej Lewenstein for insightful discussion on the GLEs and one of the referees for the constructive comments.

References

  1. 1.
    Majda, A.J., Timofeyev, I., Vanden Eijnden, E.: A mathematical framework for stochastic climate models. Commun. Pure Appl. Math. 54(8), 891–974 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Givon, D., Kupferman, R., Stuart, A.: Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17(6), R55 (2004)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Pavliotis, G.A., Stuart, A.M.: Analysis of white noise limits for stochastic systems with two fast relaxation times. Multiscale Model. Simul. 4(1), 1–35 (2005)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Pavliotis, G., Stuart, A.: Multiscale Methods, Texts in Applied Mathematics, vol. 53. Springer, New York (2008)Google Scholar
  5. 5.
    Nelson, E.: Dynamical Theories of Brownian Motion, vol. 2. Princeton University Press, Princeton (1967)zbMATHGoogle Scholar
  6. 6.
    Franosch, T., Grimm, M., Belushkin, M., Mor, F.M., Foffi, G., Forró, L., Jeney, S.: Resonances arising from hydrodynamic memory in Brownian Motion. Nature 478(7367), 85–88 (2011)ADSGoogle Scholar
  7. 7.
    Gröblacher, S., Trubarov, A., Prigge, N., Cole, G., Aspelmeyer, M., Eisert, J.: Observation of non-Markovian micromechanical Brownian motion. Nat. Commun. 6, 7606 (2015).  https://doi.org/10.1038/ncomms8606 ADSGoogle Scholar
  8. 8.
    Hottovy, S., McDaniel, A., Volpe, G., Wehr, J.: The Smoluchowski–Kramers limit of stochastic differential equations with arbitrary state-dependent friction. Commun. Math. Phys. 336(3), 1259–1283 (2015)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Trentelman, H.L., Stoorvogel, A.A., Hautus, M.: Control Theory for Linear Systems. Communications and Control Engineering Series. Springer, Berlin (2002)Google Scholar
  10. 10.
    Willems, J., Van Schuppen, J.: Stochastic systems and the problem of state space realization. In: Geometrical Methods for the Theory of Linear Systems: Proceedings of a NATO Advanced Study Institute and AMS Summer Seminar in Applied Mathematics held at Harvard University, Cambridge, June 18–29, 1979, vol. 62, p. 283. Springer, Berlin (1980)Google Scholar
  11. 11.
    Mori, H.: Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33(3), 423–455 (1965)ADSzbMATHGoogle Scholar
  12. 12.
    Kubo, R.: The fluctuation–dissipation theorem. Rep. Prog. Phys. 29(1), 255 (1966)ADSzbMATHGoogle Scholar
  13. 13.
    Toda, M., Kubo, R., Saito, N., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer Series in Solid-State Sciences. Springer, Berlin (2012)Google Scholar
  14. 14.
    Goychuk, I.: Viscoelastic subdiffusion: Generalized Langevin equation approach. Adv. Chem. Phys. 150, 187 (2012)Google Scholar
  15. 15.
    Van Kampen, N.: Remarks on non-Markov processes. Braz. J. Phys. 28(2), 90–96 (1998)ADSGoogle Scholar
  16. 16.
    Łuczka, J.: Non-Markovian stochastic processes: colored noise. Chaos: an interdisciplinary. J. Nonlinear Sci. 15(2), 026107 (2005)zbMATHGoogle Scholar
  17. 17.
    Samorodnitsky, G., Taqqu, M.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Stochastic Modeling Series. Taylor & Francis, Boca Raton (1994)zbMATHGoogle Scholar
  18. 18.
    Stella, L., Lorenz, C.D., Kantorovich, L.: Generalized Langevin equation: an efficient approach to nonequilibrium molecular dynamics of open systems. Phys. Rev. B 89, 134303 (2014).  https://doi.org/10.1103/PhysRevB.89.134303 ADSGoogle Scholar
  19. 19.
    McKinley, S.A., Yao, L., Forest, M.G.: Transient anomalous diffusion of tracer particles in soft matter. J. Rheol. (1978-present) 53(6), 1487–1506 (2009)ADSGoogle Scholar
  20. 20.
    Adelman, S., Doll, J.: Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids. J. Chem. Phys. 64(6), 2375–2388 (1976)ADSGoogle Scholar
  21. 21.
    Ottobre, M., Pavliotis, G.A.: Asymptotic analysis for the generalized Langevin equation. Nonlinearity 24, 1629–1653 (2011).  https://doi.org/10.1088/0951-7715/24/5/013 ADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)Google Scholar
  23. 23.
    Bellman, R.: Introduction to Matrix Analysis, vol. 19. SIAM, Philadelphia (1997)zbMATHGoogle Scholar
  24. 24.
    Lindquist, A., Picci, G.: Realization theory for multivariate stationary Gaussian processes. SIAM J. Control Optim. 23(6), 809–857 (1985)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Lindquist, A., Picci, G.: Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification. Series in Contemporary Mathematics. Springer, Berlin (2015)zbMATHGoogle Scholar
  26. 26.
    Bao, J.D., Hänggi, P., Zhuo, Y.Z.: Non-Markovian Brownian dynamics and nonergodicity. Phys. Rev. E 72(6), 061,107 (2005)Google Scholar
  27. 27.
    Pavliotis, G.: Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations. Texts in Applied Mathematics. Springer, New York (2014)zbMATHGoogle Scholar
  28. 28.
    Hottovy, S., McDaniel, A., Wehr, J.: A small delay and correlation time limit of stochastic differential delay equations with state-dependent colored noise. Markov Proc. Relat. Fields 22(3), 595–628 (2016)Google Scholar
  29. 29.
    Schimansky-Geier, L., Zülicke, C.: Harmonic noise: effect on bistable systems. Zeitschrift für Physik B Condensed Matter 79(3), 451–460 (1990)ADSGoogle Scholar
  30. 30.
    McDaniel, A., Duman, O., Volpe, G., Wehr, J.: An SDE approximation for stochastic differential delay equations with colored state-dependent noise (2014). arXiv:1406.7287
  31. 31.
    Hänggi, P., Jung, P., Zerbe, C., Moss, F.: Can colored noise improve stochastic resonance? J. Stat. Phys. 70(1), 25–47 (1993)ADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  33. 33.
    Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, vol. 113. Springer, Berlin (2012)zbMATHGoogle Scholar
  34. 34.
    Hottovy, S., Volpe, G., Wehr, J.: Noise-induced drift in stochastic differential equations with arbitrary friction and diffusion in the Smoluchowski–Kramers limit. J. Stat. Phys. 146(4), 762–773 (2012).  https://doi.org/10.1007/s10955-012-0418-9 ADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    Herzog, D.P., Hottovy, S., Volpe, G.: The small mass limit for Langevin dynamics with unbounded coefficients and positive friction. J. Stat. Phys. 163(3), 659–673 (2016).  https://doi.org/10.1007/s10955-016-1498-8 ADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Birrell, J., Hottovy, S., Volpe, G., Wehr, J.: Small mass limit of a Langevin equation on a manifold. Annales Henri Poincaré 18, 707–755 (2017)ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Birrell, J., Wehr, J.: Homogenization of Dissipative, Noisy, Hamiltonian Dynamics. Stochastic Processes and Their Applications. Elsevier, Amsterdam (2017)zbMATHGoogle Scholar
  38. 38.
    Volpe, G., Wehr, J.: Effective drifts in dynamical systems with multiplicative noise: a review of recent progress. Rep. Prog. Phys. 79(5), 053901 (2016)ADSGoogle Scholar
  39. 39.
    Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  40. 40.
    Winkelbauer, A.: Moments and absolute moments of the normal distribution (2012). arXiv:1209.4340
  41. 41.
    Eckmann, J.P., Pillet, C.A., Rey-Bellet, L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201(3), 657–697 (1999)ADSMathSciNetzbMATHGoogle Scholar
  42. 42.
    Hottovy, S., Volpe, G., Wehr, J.: Thermophoresis of Brownian particles driven by colored noise. EPL 99, 60002 (2012)ADSGoogle Scholar
  43. 43.
    Piazza, R., Parola, A.: Thermophoresis in colloidal suspensions. J. Phys. 20(15), 153102 (2008)Google Scholar
  44. 44.
    Kou, S.C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2(2), 501–535 (2008)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Ford, G., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6(4), 504–515 (1965)ADSMathSciNetzbMATHGoogle Scholar
  46. 46.
    Hänggi, P.: Generalized Langevin equations: A useful tool for the perplexed modeller of nonequilibrium fluctuations? Stochastic Dynamics, pp. 15–22. Springer, Berlin (1997)Google Scholar
  47. 47.
    Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9(3), 215–220 (1973).  https://doi.org/10.1007/BF01008729 ADSGoogle Scholar
  48. 48.
    Ariel, G., Vanden-Eijnden, E.: A strong limit theorem in the Kac–Zwanzig model. Nonlinearity 22(1), 145 (2008)ADSMathSciNetzbMATHGoogle Scholar
  49. 49.
    Rey-Bellet, L.: Open classical systems. Open Quantum Systems II, pp. 41–78. Springer, Berlin (2006)Google Scholar
  50. 50.
    Kabanov, Y., Pergamenshchikov, S.: Two-Scale Stochastic Systems: Asymptotic Analysis and Control. Stochastic Modelling and Applied Probability. Springer, Berlin (2013)zbMATHGoogle Scholar
  51. 51.
    Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Program in Applied MathematicsUniversity of ArizonaTucsonUSA
  2. 2.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  3. 3.Department of Mathematics and Program in Applied MathematicsUniversity of ArizonaTucsonUSA
  4. 4.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations