Advertisement

Journal of Statistical Physics

, Volume 174, Issue 2, pp 469–493 | Cite as

Fick and Fokker–Planck Diffusion Law in Inhomogeneous Media

  • D. Andreucci
  • E. N. M. CirilloEmail author
  • M. Colangeli
  • D. Gabrielli
Article

Abstract

We discuss particle diffusion in a spatially inhomogeneous medium. From the microscopic viewpoint we consider independent particles randomly evolving on a lattice. We show that the reversibility condition has a discrete geometric interpretation in terms of weights associated to un–oriented edges and vertices. We consider the hydrodynamic diffusive scaling that gives, as a macroscopic evolution equation, the Fokker–Planck equation corresponding to the evolution of the probability distribution of a reversible spatially inhomogeneous diffusion process. The geometric macroscopic counterpart of reversibility is encoded into a tensor metrics and a positive function. The Fick’s law with inhomogeneous diffusion matrix is obtained in the case when the spatial inhomogeneity is associated exclusively with the edge weights. We discuss also some related properties of the systems like a non–homogeneous Einstein relation and the possibility of uphill diffusion.

Keywords

Diffusion Fick’s law Fokker–Planck diffusion law Hydrodynamic limit 

Mathematics Subject Classification

35Q84 82C22 82C31 

References

  1. 1.
    Andreucci, D., Bellaveglia, D., Cirillo, E.N.M.: A model for enhanced and selective transport through biological membranes with alternating pores. Math. Biosci. 257, 42–49 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bian, N.H., Garcia, O.E.: Structures, profile consistency, and transport scaling in electrostatic convection. Phys. Plasmas 12, 042307 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Billingsley, P.: Convergence of Probability Measures. Wiley Series in Probability and Statistics, 2nd edn. Wiley, New York (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cirillo, E.N.M., Colangeli, M.: Stationary uphill currents in locally perturbed zero range processes. Phys. Rev. E 96, 052137 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Cirillo, E.N.M., Krehel, O., Muntean, A., van Santen, R.: A lattice model of reduced jamming by barrier. Phys. Rev. E 94, 042115 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Cirillo, E.N.M., Krehel, O., Muntean, A., van Santen, R., Sengar, A.: Residence time estimates for asymmetric simple exclusion dynamics on strips. Physica A 442, 436–457 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cirillo, E.N.M., De Bonis, I., Muntean, A., Richardson, O.: Driven particle flux through a membrane: two-scale asymptotics of a diffusion equation with polynomial drift. arXiv:1804.08392 (2018)Google Scholar
  9. 9.
    Colangeli, M., De Masi, A., Presutti, E.: Latent heat and the Fourier law. Phys. Lett. A 380, 1710–1713 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Colangeli, M., De Masi, A., Presutti, E.: Particle models with self-sustained current. J. Stat. Phys. 167, 1081–1111 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Colangeli, M., De Masi, A., Presutti, E.: Microscopic models for uphill diffusion. J. Phys. A 50, 435002 (2017)CrossRefzbMATHGoogle Scholar
  12. 12.
    Colangeli, M., Giardinà, C., Giberti, C., Vernia, C.: Non-equilibrium 2D Ising model with stationary uphill diffusion. Phys. Rev. E 97, 030103(R) (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Collins, R., Carson, S.R., Matthew, J.A.D.: Diffusion equation for one-dimensional unbiased hopping. Am. J. Phys. 65, 230 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Springer, Berlin (1991)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gardiner, C.: Stochastic Methods. Springer, Berlin (2009)zbMATHGoogle Scholar
  16. 16.
    Ghosh, K., Dill, K.A., Inamdar, M.M., Seitaridou, E., Phillips, R.: Teaching the principles of statistical dynamics. Am. J. Phys. 74, 123 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lançon, P., Batrouni, G., Lobry, L., Ostrowsky, N.: Drift without flux: Brownian walker with a space-dependent diffusion coefficient. Europhys. Lett. 54, 28–34 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Ladyzhenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence (1968)CrossRefGoogle Scholar
  20. 20.
    Landsberg, P.T.: $D{grad}\, v$ or ${grad}(Dv)$? J. Appl. Phys. 56, 1119 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    Rassoul-Agha, F., Seppäläinen, T.: A Course on Large Deviations with an Introduction to Gibbs Measures. Graduate Studies in Mathematics, vol. 162. American Mathematical Society, Providence (2015)CrossRefzbMATHGoogle Scholar
  22. 22.
    Sattin, F.: Fick’s law and Fokker-Planck equation in inhomogeneous environments. Phys. Lett. A 372, 3921–3945 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Schnitzer, M.J.: Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553–2568 (1993)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Schnitzer, M.J., Block, S.M., Berg, H.C., Purcell, E.M.: Strategies for chemotaxis. Symp. Soc. Gen. Microbiol. 46, 15 (1990)Google Scholar
  25. 25.
    Sniekers, Y.H., van Donkelaar, C.C.: Determining diffusion coefficients in inhomegeneous tissue using fluorescence recovery after photobleaching. Biophys. J. 89, 1302–1307 (2005)CrossRefGoogle Scholar
  26. 26.
    Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  27. 27.
    van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)zbMATHGoogle Scholar
  28. 28.
    van Milligen, BPh, Bons, P.D., Carreras, B.A., Sánchez, R.: On the applicability of Fick’s law to diffusion in inhomogeneous systems. Eur. J. Phys. 26, 913–925 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. Andreucci
    • 1
  • E. N. M. Cirillo
    • 1
    Email author
  • M. Colangeli
    • 2
  • D. Gabrielli
    • 2
  1. 1.Dipartimento di Scienze di Base e Applicate per l’IngegneriaSapienza Università di RomaRomeItaly
  2. 2.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversità degli Studi dell’AquilaL’AquilaItaly

Personalised recommendations