Advertisement

Journal of Statistical Physics

, Volume 174, Issue 2, pp 351–364 | Cite as

Transition of Spatial Patterns in an Interacting Turing System

  • Dhritiman Talukdar
  • Kishore DuttaEmail author
Article
  • 59 Downloads

Abstract

We consider a Turing-type reaction-diffusion system involving quadratic and cubic nonlinearities and numerically investigate the role of nonlinear terms in producing spots, stripes, labyrinths, hexagonal arrangement of spots, blotches and transitions among them. From our numerical experiments performed on a square domain with zero-flux boundary conditions, we observe that the system displays a form of multistability for which different stable spatial distribution of concentrations appear for a same set of control parameters depending upon the initial conditions. For varying values of model parameters both in the first- and the second-stage of simulations, we obtain a number of transition states that are found to be sensitive on the relative strength of the quadratic and cubic coupling terms. We obtain a graphical relationship among such model parameters at which the transitions take place.

Notes

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

Since no human or animal participants are involved in this research work, no ethical standards were applicable.

References

  1. 1.
    Turing, A.M.: On the chemical basis of morphogenesis. Philos. Trans. R Soc. Lond B 237, 37 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Murray, J.D.: A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88, 161 (1981)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Liu, R.T., Liaw, S.S., Maini, P.K.: Two-stage Turing model for generating pigment patterns on the leopard and the jaguar. Phys. Rev. E 74, 011914 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Bard, J.B.L.: A model for generating aspects of zebra and other mammalian coat patterns. J. Theor. Biol. 93, 363 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Murray, J.D.: Mathematical Biology, vol. I & II, 3rd edn. Springer, New York (2002)zbMATHGoogle Scholar
  6. 6.
    Murray, J.D., Myerscough, M.R.: Pigmentation pattern formation on snakes. J. Theor. Biol. 149, 339 (1991)CrossRefGoogle Scholar
  7. 7.
    Murray, J.D.: On pattern formation mechanism for lepidopteran wing patterns and mammalian coat markings. Philos. Trans. R. Soc. Lond. B 295, 473 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    Nijhout, H.F.: A comprehensive model for color pattern formation in butterflies. Proc. R. Soc. Lond. B 239, 81 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    Sekimura, T., Madzvamuse, A., Wathen, A.J., Maini, P.K.: A model for color pattern formation in the butterfly wing of Papilio dardanus. Proc. R. Soc. Lond. B 267, 851 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kondo, S., Asai, R.: A reaction-diffusion wave on the marine angelfish Pomacanthus. Nature 376, 765 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Asai, R.: Zebrafish Leopard gene as a component of the putative reaction-diffusion system. Mech. Dev. 89, 87 (1999)CrossRefGoogle Scholar
  12. 12.
    Shoji, H.: Origin of directionality in the fish stripe pattern. Dev. Dyn. 226, 627 (2003)CrossRefGoogle Scholar
  13. 13.
    Barrio, R.A.: Modeling the skin pattern of fishes. Phys. Rev. E 79, 031908 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Liaw, S.S.: Turing model for the patterns of lady beetles. Phys. Rev. E 64, 041909 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Ben-Jacob, E., et al.: Generic modeling of cooperative growth patterns of bacterial colonies. Nature (Landon) 368, 46 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    Tyson, R., Lubkin, S.R., Murray, J .D.: A minimal mechanism for bacterial pattern formation. Proc. R. Soc. Lond. Ser. B 266, 299 (1999)CrossRefGoogle Scholar
  17. 17.
    Meinhardt, H.: Models of Biological Pattern Formation. Academic Press Inc., London (1982)Google Scholar
  18. 18.
    Liaw, S.S.: Phyllotaxis: its geometry and dynamics. Phys. Rev. E 57, 4589 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Röhrich, B., Parisi, J., Peinke, J., Rössler, O.E.: A simple morphogenetic reaction-diffusion model describing nonlinear transport phenomena in semiconductors. Z. Phys. B 65, 259 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    Balkarei, Y.I., Grigoryants, A.V., Rzhanov, Y.A., Elinson, M.I.: Regenerative oscillations, spatial-temporal single pulses and static inhomogeneous structures in optically bistable semiconductors. Opt. Commun. 66, 161 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    Nozakura, T., Ikeuchi, S.: Spiral patterns on a differentially rotating galactic disk-Self-organized structures in galaxies. Astrophys. J. 279, 40 (1984)ADSCrossRefGoogle Scholar
  22. 22.
    Mecke, K.R., Buchert, T., Wagner, H.: Robust morphological measures for large-scale structure in the universe. Astron. Astrophys. 288, 697 (1994)ADSGoogle Scholar
  23. 23.
    Barrio, R.A., Varea, C., Araǵon, J.L., Maini, P.K.: A two-dimensional numerical study of spatial pattern formation in interacting turing systems. Bull. Math. Biol. 61, 483 (1999)CrossRefzbMATHGoogle Scholar
  24. 24.
    Leppnen, T., Karttunen, M., Barrio, R.A., Kaski, K.: Morphological transitions and bistability in Turing systems. Phys. Rev. E 70, 066202 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Barrio, R.A.: Size-dependent symmetry breaking in models for morphogenesis. Phys. D 168, 61 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Aragón, J.L., et al.: Turing patterns with pentagonal symmetry. Phys. Rev. E 65, 051913 (2002)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Schneider, J.T.: Perfect stripes from a general Turing model in different geometries, PhD Thesis, Boise State University (2012)Google Scholar
  28. 28.
    Aragón, J.L.: Spatial patterning in modified Turing systems: application to pigmentation patterns on marine fish. Forma 13, 213 (1998)Google Scholar
  29. 29.
    Werdelin, L., Olsson, L.: How the leopard got its spots: a phylogenetic view of the evolution of felid coat patterns. Biol. J. Linn. Soc. 62, 383 (1997)CrossRefGoogle Scholar
  30. 30.
    Ouyang, Q., Swinney, H.L.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    Vanag, V.K., Epstein, I.R.: Translational and nontranslational motion of perturbed Turing patterns. Phys. Rev. E 67, 066219 (2003)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Rüdiger, S.: Dynamics of Turing patterns under spatiotemporal forcing. Phys. Rev. Lett. 90, 128301 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Vanag, V.K., Epstein, I.R.: Pattern formation mechanisms in reaction-diffusion systems. Int. J. Dev. Biol. 53, 673 (2009)CrossRefGoogle Scholar
  34. 34.
    Yang, L., et al.: Turing patterns beyond hexagons and stripes. Chaos 16, 037114 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Yang, L., Epstein, I.R.: Symmetric, asymmetric, and antiphase Turing patterns in a model system with two identical coupled layers. Phys. Rev. E 69, 026211 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Dolnik, M., Berenstein, I., Zhabotinsky, A.M., Epstein, I.R.: Spatial periodic forcing of Turing structures. Phys. Rev. Lett. 87, 238301 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    Karttunen, M., Provatas, N., Ala-Nissila, T., Grant, M.: Nucleation, growth, and scaling in slow combustion. J. Stat. Phys. 90, 1401 (1998)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Kim, T., Lin, M.: Stable advection-reaction-diffusion with arbitrary anisotropy. Comput. Anim. Virtual Worlds 18, 329 (2007)CrossRefGoogle Scholar
  39. 39.
    Painter, K.J., Maini, P.K., Othmer, H.G.: Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc. Natl. Acad. Sci. USA 96, 5549 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    Nakao, H., Mikhailov, A.S.: Turing patterns in network-organized activator–inhibitor systems. Nat. Phys. 6, 544 (2010)CrossRefGoogle Scholar
  41. 41.
    Wu, F.: Multistability and dynamic transitions of intracellular Min protein patterns. Mol. Syst. Biol. 12, 873 (2016)CrossRefGoogle Scholar
  42. 42.
    Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    Maini, P.K., et al.: Turing’s model for biological pattern formation and the robustness problem. Interface Focus 2, 487 (2012)CrossRefGoogle Scholar
  44. 44.
    Biancalani, T., Jafarpour, F., Goldenfeld, N.: Giant amplification of noise in fluctuation-induced pattern formation. Phys. Rev. Lett. 118, 018101 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    Guiu-Souto, J., et al.: Characterizing topological transitions in a Turing-pattern-forming reaction-diffusion system. Phys. Rev. E 85, 056205 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsHandique Girls’ CollegeGuwahatiIndia

Personalised recommendations