Journal of Statistical Physics

, Volume 174, Issue 1, pp 77–96 | Cite as

A Non-intersecting Random Walk on the Manhattan Lattice and \({\hbox {SLE}}_{6}\)

  • Tom KennedyEmail author


We consider a random walk on the Manhattan lattice. The walker must follow the orientations of the bonds in this lattice, and the walker is not allowed to visit a site more than once. When both possible steps are allowed, the walker chooses between them with equal probability. The walks generated by this model are known to be related to interfaces for bond percolation on a square lattice. So it is natural to conjecture that the scaling limit is \(\hbox {SLE}_6\). We test this conjecture with Monte Carlo simulations of the random walk model and find strong support for the conjecture.


Non-intersecting random walk Manhattan lattice Schramm–Loewner evolution Bond percolation 



An allocation of computer time from the UA Research Computing High Performance Computing (HPC) and High Throughput Computing (HTC) at the University of Arizona is gratefully acknowledged. Funding was provided by Directorate for Mathematical and Physical Sciences (Grant No. DMS-1500850).


  1. 1.
    Amit, D.J., Parisi, G., Peliti, L.: Asymptotic behavior of the “true” self-avoiding walk. Phys. Rev. B 27, 1635 (1983)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bradley, R.M.: Exact \(\theta \) point and exponents for polymer chains on an oriented two-dimensional lattice. Phys. Rev. A 39, 3738–3740 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    Camia, F., Newman, C.M.: Critical percolation exploration path and \(\text{ SLE }_6\): a proof of convergence. Prob. Theory Relat. Fields 139, 473–519 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dai, Y.: The exit distribution for smart kinetic walk with symmetric and asymmetric transition probability. J. Stat. Phys. 166, 1455–1463 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Grimmett, G.: Percolation. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gunn, J.M.F., Ortuno, M.: Percolation and motion in a simple random environment. J. Phys. A 18, L1095 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    Hemmer, P.C., Hemmer, S.: Trapping of genuine self-avoiding walks. Phys. Rev. A 34, 3304 (1986)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Kasteleyn, P.W.: A soluble self-avoiding walk problem. Physica 29, 1329–1337 (1963)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Kennedy, T.: Monte Carlo tests of SLE predictions for 2D self-avoiding walks. Phys. Rev. Lett. 88, 130601 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Kennedy, T.: Conformal invariance and stochastic Loewner evolution predictions for the 2D self-avoiding walk—Monte Carlo tests. J. Stat. Phys. 114, 51–78 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kennedy, T.: The smart kinetic self-avoiding walk and Schramm–Loewner evolution. J. Stat. Phys. 160, 302–320 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kremer, K., Lyklema, J.W.: Indefinitely growing self-avoiding walk. Phys. Rev. Lett. 54, 267 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    Lawler, G.: Conformally Invariant Processes in the Plane. American Mathematical Society, Providence (2005)zbMATHGoogle Scholar
  14. 14.
    Lawler, G.F.,  Schramm, O.,  Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Part 2, vol. 339. Proc. Sympos. Pure Math. vol. 72. Amer. Math. Soc., Providence, RI (2004).Google Scholar
  15. 15.
    Lawler, G., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32, 939–995 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhäuser, Basel (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Malakis, A.: Self-avoiding walks on oriented square lattices. J. Phys. A. 8, 1885–1898 (1975)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Schramm, O.: A percolation formula. Electron. Comm. Probab. 6, 115–120 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Math. Acad. Sci. Paris 333, 239–244 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Weinrib, A., Trugman, S.A.: A new kinetic walk and percolation perimeters. Phys. Rev. B 31, 2993 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    Werner, W.: Lectures on two-dimensional critical percolation. In: Sheffield, S., Spencer, T. (eds.) Statistical Mechanics. IAS, Park City (2007)Google Scholar
  22. 22.
    Ziff, R.M., Cummings, P.T., Stell, G.: Generation of percolation cluster perimeters by a random walk. J. Phys. A 17, 3009 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations