Skip to main content
Log in

Opinion Dynamics on Networks under Correlated Disordered External Perturbations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study an influence network of voters subjected to correlated disordered external perturbations, and solve the dynamical equations exactly for fully connected networks. The model has a critical phase transition between disordered unimodal and ordered bimodal distribution states, characterized by an increase in the vote-share variability of the equilibrium distributions. The fluctuations (variance and correlations) in the external perturbations are shown to reduce the impact of the external influence by increasing the critical threshold needed for the bimodal distribution of opinions to appear. The external fluctuations also have the surprising effect of driving voters towards biased opinions. Furthermore, the first and second moments of the external perturbations are shown to affect the first and second moments of the vote-share distribution. This is shown analytically in the mean field limit, and confirmed numerically for fully connected networks and other network topologies. Studying the dynamic response of complex systems to disordered external perturbations could help us understand the dynamics of a wide variety of networked systems, from social networks and financial markets to amorphous magnetic spins and population genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nowak, A., Latane, B., Szamrej, J.: From private attitude to public opinion: a dynamic theory of social impact. Psychol. Rev. 97(3), 362–376 (1990)

    Article  Google Scholar 

  2. de Oliveira, M.J.: Isotropic majority-vote model on a square lattice. J. Stat. Phys. 66(1–2), 273–281 (1992)

    Article  ADS  Google Scholar 

  3. Kirman, A.: Ants, rationality, and recruitment. Q. J. Econ. 108(1), 137–156 (1993)

    Article  MathSciNet  Google Scholar 

  4. Krapivsky, P.L., Redner, S.: Dynamics of majority rule in two-state interacting spin systems. Phys. Rev. Lett. 90(23), 238701 (2003)

    Article  ADS  Google Scholar 

  5. Galam, S.: Local dynamics vs. social mechanisms: a unifying frame. Europhys. Lett. 70(6), 705–711 (2005)

    Article  ADS  Google Scholar 

  6. Miguel, M.S., Eguiluz, V.M., Toral, R., Klemm, K.: Binary and multivariate stochastic models of consensus formation. Comput. Sci. Eng. 7(6), 67–73 (2005)

    Article  Google Scholar 

  7. Chinellato, D.D., de Aguiar, M.A.M., Epstein, I.R., Braha, D., Bar-Yam, Y.: Dynamical response of networks under external perturbations: exact results. arXiv preprint arXiv:0705.4607 (2007)

  8. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591 (2009)

    Article  ADS  Google Scholar 

  9. da Fontoura Costa, L., Oliveira Jr., O.N., Travieso, G., Rodrigues, F.A., Boas, P.R.V., Antiqueira, L., Viana, M.P., Rocha, L.E.C.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011)

    Article  ADS  Google Scholar 

  10. Galam, S.: Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena. Springer, Berlin (2012)

    Book  Google Scholar 

  11. Helbing, D., Brockmann, D., Chadefaux, T., Donnay, K., Blanke, U., Woolley-Meza, O., Moussaid, M., Johansson, A., Krause, J., Schutte, S.: Saving human lives: what complexity science and information systems can contribute. J. Stat. Phys. 158(3), 735–781 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Gonçalves, B., Perra, N.: Social Phenomena: From Data Analysis to Models. Springer, Berlin (2015)

    Book  Google Scholar 

  13. Chinellato, D.D., Epstein, I.R., Braha, D., Bar-Yam, Y., de Aguiar, M.A.M.: Dynamical response of networks under external perturbations: exact results. J. Stat. Phys. 159(2), 221–230 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Harmon, D., Lagi, M., de Aguiar, M.A.M., Chinellato, D.D., Braha, D., Epstein, I.R., Bar-Yam, Y.: Anticipating economic market crises using measures of collective panic. PLoS ONE 10(7), e0131871 (2015)

    Article  Google Scholar 

  15. Ramos, M., Shao, J., Reis, S.D.S., Anteneodo, C., Andrade, J.S., Havlin, S., Makse, H.A.: How does public opinion become extreme? Sci. Rep. 5, 10032 (2015)

    Article  ADS  Google Scholar 

  16. Braha, D., de Aguiar, M.A.M.: Voting contagion: modeling and analysis of a century of US presidential elections. PLoS ONE 12(5), e0177970 (2017)

    Article  Google Scholar 

  17. Liggett, T.M.: Interacting Particle Systems, vol. 276. Springer, Berlin (2012)

    MATH  Google Scholar 

  18. Fernández-Gracia, J., Suchecki, K., Ramasco, J.J., Miguel, M.S., Eguíluz, V.M.: Is the voter model a model for voters? Phys. Rev. Lett. 112(15), 158701 (2014)

    Article  ADS  Google Scholar 

  19. Latané, B.: The psychology of social impact. Am. Psychol. 36(4), 343 (1981)

    Article  Google Scholar 

  20. Hołyst, J.A., Kacperski, K., Schweitzer, F.: Social impact models of opinion dynamics. In: Annual Reviews Of Computational PhysicsIX, pp. 253–273. World Scientific, Singapore (2001)

    Chapter  Google Scholar 

  21. Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91(2), 028701 (2003)

    Article  ADS  Google Scholar 

  22. Galam, S., Jacobs, F.: The role of inflexible minorities in the breaking of democratic opinion dynamics. Phys. A: Stat. Mech. Appl. 381, 366–376 (2007)

    Article  Google Scholar 

  23. Acemoğlu, D., Como, G., Fagnani, F., Ozdaglar, A.: Opinion fluctuations and disagreement in social networks. Math. Oper. Res. 38(1), 1–27 (2013)

    Article  MathSciNet  Google Scholar 

  24. Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary opinion dynamics with stubborn agents. ACM Trans. Econ. Comput. 1(4), 1–30 (2013)

    Article  Google Scholar 

  25. Yaokun, W., Shen, J.: Opinion dynamics with stubborn vertices. Electron. J. Linear Algebra 23(1), 56 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Galam, S.: Stubbornness as an unfortunate key to win a public debate: an illustration from sociophysics. Mind Soc. 15(1), 117–130 (2016)

    Article  Google Scholar 

  27. Xie, J., Sreenivasan, S., Korniss, G., Zhang, W., Lim, C., Szymanski, B.K.: Social consensus through the influence of committed minorities. Phys. Rev. E 84(1), 011130 (2011)

    Article  ADS  Google Scholar 

  28. Xie, J., Emenheiser, J., Kirby, M., Sreenivasan, S., Szymanski, B.K., Korniss, G.: Evolution of opinions on social networks in the presence of competing committed groups. PLoS ONE 7(3), e33215 (2012)

    Article  ADS  Google Scholar 

  29. Singh, P., Sreenivasan, S., Szymanski, B.K., Korniss, G.: Accelerating consensus on coevolving networks: the effect of committed individuals. Phys. Rev. E 85(4), 046104 (2012)

    Article  ADS  Google Scholar 

  30. Khalil, N., Miguel, M.S., Toral, R.: Zealots in the mean-field noisy voter model. Phys. Rev. E 97(1), 012310 (2018)

    Article  ADS  Google Scholar 

  31. Mobilia, M., Petersen, A., Redner, S.: On the role of zealotry in the voter model. J. Stat. Mech. Theory Exp. 2007(08), P08029 (2007)

    Article  MathSciNet  Google Scholar 

  32. Galam, S.: Rational group decision making: a random field ising model at t = 0. Phys. A: Stat. Mech. Appl. 238(1–4), 66–80 (1997)

    Article  Google Scholar 

  33. Carletti, T., Fanelli, D., Grolli, S., Guarino, A.: How to make an efficient propaganda. EPL 74(2), 222 (2006)

    Article  ADS  Google Scholar 

  34. Kuperman, M., Zanette, D.: Stochastic resonance in a model of opinion formation on small-world networks. Eur. Phys. J. B Condens. Matter Complex Syst. 26(3), 387–391 (2002)

    Google Scholar 

  35. Tessone, C.J., Toral, R.: System size stochastic resonance in a model for opinion formation. Phys. A: Stat. Mech. Appl. 351(1), 106–116 (2005)

    Article  Google Scholar 

  36. González-Avella, J.C., Cosenza, M.G., Tucci, K.: Nonequilibrium transition induced by mass media in a model for social influence. Phys. Rev. E 72(6), 065102 (2005)

    Article  ADS  Google Scholar 

  37. Shibanai, Y., Yasuno, S., Ishiguro, I.: Effects of global information feedback on diversity: extensions to axelrod’s adaptive culture model. J. Conflict Resolut. 45(1), 80–96 (2001)

    Article  Google Scholar 

  38. Mazzitello, K.I., Candia, J., Dossetti, V.: Effects of mass media and cultural drift in a model for social influence. Int. J. Mod. Phys. C 18(09), 1475–1482 (2007)

    Article  ADS  Google Scholar 

  39. Galam, S.: Heterogeneous beliefs, segregation, and extremism in the making of public opinions. Phys. Rev. E 71(4), 046123 (2005)

    Article  ADS  Google Scholar 

  40. Galam, S.: The trump phenomenon: an explanation from sociophysics. Int. J. Mod. Phys. B 31(10), 1742015 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  41. Galam, S.: Contrarian deterministic effects on opinion dynamics:“the hung elections scenario”. Phys. A: Stat. Mech. Appl. 333, 453–460 (2004)

    Article  MathSciNet  Google Scholar 

  42. Shao, J., Havlin, S., Stanley, H.E.: Dynamic opinion model and invasion percolation. Phys. Rev. Lett. 103(1), 018701 (2009)

    Article  ADS  Google Scholar 

  43. Li, Q., Braunstein, L.A., Wang, H., Shao, J., Stanley, H.E., Havlin, S.: Non-consensus opinion models on complex networks. J. Stat. Phys. 151(1–2), 92–112 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  44. Calvão, A.M., Ramos, M., Anteneodo, C.: Role of the plurality rule in multiple choices. J. Stat. Mech.: Theory Exp. 2016(2), 023405 (2016)

    Article  MathSciNet  Google Scholar 

  45. Fortunato, S., Castellano, C.: Scaling and universality in proportional elections. Phys. Rev. Lett. 99(13), 138701 (2007)

    Article  ADS  Google Scholar 

  46. Palombi, F., Toti, S.: Stochastic dynamics of the multi-state voter model over a network based on interacting cliques and zealot candidates. J. Stat. Phys. 156(2), 336–367 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  47. de Aguiar, M.A.M., Bar-Yam, Y.: Moran model as a dynamical process on networks and its implications for neutral speciation. Phys. Rev. E 84(3), 031901 (2011)

    Article  ADS  Google Scholar 

  48. Watterson, G.A.: Markov chains with absorbing states: a genetic example. Ann. Math. Stat. 32, 716–729 (1961)

    Article  MathSciNet  Google Scholar 

  49. Gladstien, K.: The characteristic values and vectors for a class of stochastic matrices arising in genetics. SIAM J. Appl. Math. 34(4), 630–642 (1978)

    Article  MathSciNet  Google Scholar 

  50. Cannings, C.: The latent roots of certain markov chains arising in genetics: a new approach, i. haploid models. Adv. Appl. Probab. 6(2), 260–290 (1974)

    Article  MathSciNet  Google Scholar 

  51. Lafuerza, L.F., Toral, R.: On the effect of heterogeneity in stochastic interacting-particle systems. Sci. Rep. 3, 1189 (2013)

    Article  ADS  Google Scholar 

  52. Schneider, D.M., Martins, A.B., de Aguiar, M.A.M.: The mutation-drift balance in spatially structured populations. J. Theor. Biol. 402, 9–17 (2016)

    Article  MathSciNet  Google Scholar 

  53. Limpert, E., Stahel, W.A., Abbt, M.: Log-normal distributions across the sciences: keys and clues: on the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal: that is the question. AIBS Bull. 51(5), 341–352 (2001)

    Google Scholar 

  54. Yue, S.: The bivariate lognormal distribution to model a multivariate flood episode. Hydrol. Process. 14(14), 2575–2588 (2000)

    Article  ADS  Google Scholar 

  55. Kleiber, C., Kotz, S.: Statistical Size Distributions in Economics and Actuarial Sciences, vol. 470. Wiley, New York (2003)

    Book  Google Scholar 

  56. Efron, B., Tibshirani, R.J.: An introduction to the bootstrap. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  57. Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  58. Braha, D., de Aguiar, M.A., Ramos, M.: Opinion dynamics on arbitrary networks: scaling theory (in preparation)

  59. Braha, D., Bar-Yam, Y.: From centrality to temporary fame: dynamic centrality in complex networks. Complexity 12(2), 59–63 (2006)

    Article  Google Scholar 

  60. Hill, S.A., Braha, D.: Dynamic model of time-dependent complex networks. Phys. Rev. E 82(4), 046105 (2010)

    Article  ADS  Google Scholar 

  61. Braha, D., Bar-Yam, Y.: Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interactions. In: Gross, T., Sayama, H. (eds.) Adaptive Networks: Theory, Models and Applications, pp. 39–50. Springer, Berlin (2009)

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their constructive comments and suggestions. MFR is supported by CNPq (Grant \(\#\hbox {152885/2016-1}\)). MAMA was partially supported by Fapesp (Grants \(\#\hbox {2016/05460-3}\) and \(\#\hbox {2016/01343-7}\)) and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus A. M. de Aguiar.

Appendices

Appendix 1: The Dependence of \(\sigma _{\nu }^2\) on Total Fluctuations

Consider Eq 21. In the fully symmetric case, \((\bar{N_0}=\bar{N_1}\equiv \bar{N}, \sigma _0=\sigma _1\equiv \sigma \) and \(n_0=n_1\equiv n)\). This implies that \(\bar{n}_T=N+\bar{N_0}+\bar{N_1}-1=N+2\bar{N}-1\), and Eq. (21) becomes

$$\begin{aligned} n=\left[ \frac{\bar{N}\bar{n}_T^2-(\bar{n}_T-2\bar{N})(\sigma ^2+\text{ cov }_{01})}{\bar{n}_T^2+2(\text{ cov }_{01}+\sigma ^2)}\right] . \end{aligned}$$
(44)

In turn, the variance \(\sigma _{\nu }^2\) is given by Eq. (16)

$$\begin{aligned} \sigma _{\nu }^2=\frac{1}{4N}\left( \frac{N}{2n+1}+\frac{2n}{2n+1}\right) . \end{aligned}$$
(45)

Thus, even without the linear approximation, \(\sigma _{\nu }^2\) is a function of the total fluctuation \(\sigma ^2+\text{ cov }_{01}\).

Appendix 2: Generating the Lognormal Distributions

In this appendix, we describe the methods used to generate the bivariate lognormal distributions for the various simulations.

Consider a semi-symmetric bivariate lognormal distributions (\(\bar{N_0}\ne \bar{N_1}\) and \(\sigma _0^2=\sigma _1^2\equiv \sigma ^2\)) as used in Fig. 3. In this case, we fix the values of \(\bar{N_0}, \bar{N_1}, \sigma \) and \(\rho _{01}\), and determine the values of \(\mu _1\), \(\mu _2\), \(\sigma _{X_1}\), \(\sigma _{X_2}\) and \(\rho \) by solving Eqs. (35) and (36). From these Eqs we can extract the values of \(\sigma _{X_1}\) and \(\mu _1\):

$$\begin{aligned} \sigma _{X_1}^2=\ln \left( \frac{\sigma ^2}{\bar{N_0}^2}+1\right) \end{aligned}$$
(46)

and

$$\begin{aligned} \mu _1=\ln (\bar{N_0})-\frac{\sigma _{X_1}^2}{2}. \end{aligned}$$
(47)

The values of \(\sigma _{X_2}\) and \(\mu _2\) can be obtained similarly. The covariance \(\text{ cov }(X_1, X_2)\) is extracted from Eq. (36):

$$\begin{aligned} \text{ cov }(X_1, X_2)=\ln \left( \frac{\rho _{01}\sigma ^2}{\bar{N_0}\bar{N_1}}+1\right) . \end{aligned}$$
(48)

Finally, the expression for \(\rho \) is obtained from \(\rho =\text{ cov }(X_1, X_2)/(\sigma _{X_1}\sigma _{X_2})\). Having determined the values of \(\mu _1\), \(\mu _2\), \(\sigma _{X_1}\), \(\sigma _{X_2}\) and \(\rho \) we can generate a bivariate normal variable \((X_1, X_2)^{T}\), which is then used to generate the external influence vector \(\mathcal {N}=e^{\mathbf {X}}\). The fully symmetric bivariate lognormal distributions as the ones used in Figs. 1, 2 and 4, 5, 6 can be obtained by setting \(\bar{N_0}=\bar{N_1}\equiv \bar{N}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, M., de Aguiar, M.A.M. & Braha, D. Opinion Dynamics on Networks under Correlated Disordered External Perturbations. J Stat Phys 173, 54–76 (2018). https://doi.org/10.1007/s10955-018-2135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2135-5

Keywords

Navigation