Advertisement

Journal of Statistical Physics

, Volume 172, Issue 6, pp 1617–1640 | Cite as

Path Integral Formulation of Fractionally Perturbed Lagrangian Oscillators on Fractal

  • Rami Ahmad El-Nabulsi
Article

Abstract

Fractional path integration and particles trajectories in fractional dimensional space are motivating issues in quantum mechanics and kinetics. In this paper, a fractional path integral characterized by a fractional propagator is developed based on the framework of the fractional action-like variational approach. A fractional generalization of the free particle problem is found, the corresponding fractional Schrödinger equation is derived and a fractional path integral formulation of harmonic oscillators characterized by a perturbed Lagrangian is constructed after reducing the fractional action to an integral action on fractal. The new fractal-like path integral offers a number of motivating features which are discussed and analyzed. The main outcome is connected to the possibility of constructing on a fractal a path integral for the oscillators characterized by modified ground energy. In particular for low-temperature case, the fractional perturbed oscillator is characterized by a free energy larger than the standard value \( E_{0} = {{\hbar \omega } \mathord{\left/ {\vphantom {{\hbar \omega } 2}} \right. \kern-0pt} 2}.\) Such an increase in the ground energy generalizes the uncertainty principle without involving differentiable paths or even invoking new phenomenological theories based on deformed algebra.

Keywords

Fractional path integral Fractionally harmonic oscillators Modified ground state energy level 

Notes

Acknowledgments

I would like to thank the anonymous reviewers for their careful reading of my manuscript, their several insightful comments and valuable suggestions.

References

  1. 1.
    Sakurai, J.J.: Modern Quantum Mechanics. Benjamin/Cummings, Menlo Park (1985)Google Scholar
  2. 2.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. III. Addison-Wesley, Reading (1965)zbMATHGoogle Scholar
  3. 3.
    Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)zbMATHGoogle Scholar
  4. 4.
    Zaburdaev, V., Denisov, S., Klafter, J.: Levy walks. Rev. Mod. Phys. 87, 483–500 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268, 298–305 (2000)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Laskin, N.: Fractional quantum mechanics. Phys. Lett. A 268, 268–305 (2000)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Eab, C.H., Lim, S.C.: Path integral representation of fractional harmonic oscillator. Phys. A 371, 303–316 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kleinert, H.: Fractional quantum field theory, path integral, and stochastic differential equation for strongly interacting many-particle systems. Eur. Phys. Lett. 100, 10001–10004 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Calcagni, G., Nardelli, G., Scalisi, M.: Quantum mechanics in fractional and other anomalous spacetimes. J. Math. Phys. 53, 102110–102125 (2012)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Nayga, M.M.I., Esguerra, J.P.H.: Levy path integral approach to the fractional Schrödinger equation with delta-perturbed infinite square well. Int. J. Mod. Phys. Conf. Ser. 36, 1560015–1560020 (2015)CrossRefGoogle Scholar
  11. 11.
    Laskin, N.: Fractional Schrodinger equation. Phys. Rev. E 66, 056108 (2002)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    El-Nabulsi, R.A.: Fractional path integral and exotic vacuum for the free spinor field theory with Grassman anticommuting variables. Electron. J. Theor. Phys. 4, 157–164 (2007)zbMATHGoogle Scholar
  13. 13.
    El-Nabulsi, R.A.: Subdiffusion over fractional quantum paths without fractional derivatives. Fizika A17(2), 71–76 (2008)ADSGoogle Scholar
  14. 14.
    Zhang, Y., Liu, X., Belic, M.R., Zhong, W., Zhang, Y., Xiao, M.: Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys. Rev. Lett. 115, 180403–180407 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40, 1117–1120 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Liemert, A., Kienle, A.: Fractional Schrödinger equation in the presence of the linear potential. Mathematics 4, 31–45 (2016)CrossRefGoogle Scholar
  17. 17.
    Miller, M.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives—Theory and Application. Wiley, New York (1993)Google Scholar
  18. 18.
    Podlubny, I.: Fractional Differential Equations. Academic, New York (1999)zbMATHGoogle Scholar
  19. 19.
    Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific Publishing Company, Singapore (2011)CrossRefGoogle Scholar
  20. 20.
    Novikov, A.: Path integral formulation of dissipative quantum dynamics, von der Fakulat fur Naturwissenschaften der Technischen Universitat Chemnitz genehmigte. Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium, geboren am 21 Marz 1976 in Moskau (Russland), eingereicht am 20, January 2005Google Scholar
  21. 21.
    Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)CrossRefGoogle Scholar
  22. 22.
    Dittrich, T., Hanggi, P., Ingold, G.-L., Kramer, B., Schon, G., Zwerger, W.: Quantum Transport and Dissipation. Wiley-VCH, Weinheim (1998)zbMATHGoogle Scholar
  23. 23.
    Ingold, G.-L.: Path integrals and their application to dissipative quantum systems. In: Buchleitner, A., Hornberger, K. (eds.) LNP 611, pp. 1–53. Springer, Berlin (2002)Google Scholar
  24. 24.
    Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012)CrossRefGoogle Scholar
  25. 25.
    El-Nabulsi, R.A.: A fractional approach to nonconservative Lagrangian dynamical systems. Fizika A14(4), 289–298 (2005)MathSciNetGoogle Scholar
  26. 26.
    El-Nabulsi, R.A.: A fractional action-like variational approach of some classical, quantum and geometrical dynamics. Int. J. Appl. Math. 17(3), 299–317 (2005)MathSciNetzbMATHGoogle Scholar
  27. 27.
    El-Nabulsi, R.A., Torres, D.F.M.: Fractional actionlike variational problems. J. Math. Phys. 49(5), 053521–053528 (2008)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    El-Nabulsi, R.A.: Fractional variational symmetries of Lagrangians, the fractional Galilean transformation and the modified Schrödinger equation. Nonlinear Dyn. 81, 939–948 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Udriste, C., Duca, I.: Periodical solutions of multi-time Hamilton equations. Analele Universitatii Bucuresti 55, 179–188 (2005)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Udriste, C., Tevy, I.: Multi-time Euler–Lagrange–Hamilton theory. WSEAS Trans. Math. 6, 701–709 (2007)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Calcagni, G.: Geometry of fractional spaces. Adv. Theor. Math. Phys. 16, 549–644 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Calcagni, G.: Fractal universe and quantum gravity. Phys. Rev. Lett. 104, 251301 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Diaz, V.A., Giusti, A.: Fractional bosonic strings. J. Math. Phys. 59, 033509 (2017)ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    El-Nabulsi, R.A.: Fractional variational approach for dissipative mechanical systems. Anal. Theor. Appl. 30, 1–10 (2014)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Shchigolev, V.K.: Testing fractional action cosmology. Eur. Phys. J. Plus 131, 256 (2016)Google Scholar
  36. 36.
    Shchigolev, V.K.: Cosmic evolution in fractional action cosmology. Disc. Nonlinearity Complex. 2, 115–123 (2013)CrossRefGoogle Scholar
  37. 37.
    El-Nabulsi, R.A.: Fractional action oscillating phantom cosmology with conformal coupling. Eur. Phys. J. Plus 130, 102–112 (2015)CrossRefGoogle Scholar
  38. 38.
    El-Nabulsi, R.A.: Gravitons in fractional action cosmology. Int. J. Theor. Phys. 51, 3978–3992 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    El-Nabulsi, R.A.: Wormholes in fractional action cosmology. Can. J. Phys. 95, 605–609 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)zbMATHGoogle Scholar
  41. 41.
    Long, G.-Y., Qin, S.-J., Yang, Z.-H., Guo, G.-J.: Solution to the Schrödinger equation for the time-dependent potential. Int. J. Theor. Phys. 48, 981–985 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Iserles, A., Kropielnicka, K., Singh, P.: On the discretization of the semiclassical Schrödinger equation with time-dependent potential. Technical Report NA2015/02 (2015)Google Scholar
  43. 43.
    Dodonov, V.V., Man’ko, V.I., Nikonov, D.E.: Exact propagators for time-dependent Coulomb, delta and other potentials. Phys. Lett. A 162, 359–364 (1992)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Campbell, J.: Some exact results for the Schrödinger wave equation with a time-dependent potential. J. Phys. A Math. Gen. 42, 365212 (2009)CrossRefGoogle Scholar
  45. 45.
    Ganguly, A., Das, A.: Schrödinger equation with time-dependent mass function and associated generalized KdV equation. Phys. Script. 90, 055204 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Colegrave, R.K., Abdalla, M.S.: Harmonic oscillator with exponential decaying mass. J. Phys. A 14, 2269–2280 (1981)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Brown, L.S.: Quantum motion in a Paul trap. Phys. Rev. Lett. 66, 527–529 (1991)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Pedrosa, I.A.: Exact wave functions of a harmonic oscillator with time-dependent mass and frequency. Phys. Rev. A 55, 3219–3221 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    Feng, M.: Complete solution of the Schrödinger equation for the time-dependent linear potential. Phys. Rev. A 64, 034101 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    Ziegenhain, K.H., Pinkston, W.T., Oberacker, V.E.: On the Schrödinger equation with a time dependent mass parameter: nuclear fragmentation theory. Physik A304, 201 (1982)CrossRefGoogle Scholar
  51. 51.
    Gurarie, V.: Quantum Field Theory. Lectures Given at the University of Colorado, Boulder, Fall (2015).Google Scholar
  52. 52.
    El-Nabulsi, R.A.: Fractional quantum Euler–Cauchy equation in the Schrodinger picture, complexified harmonic oscillators and emergence of complexified Lagrangian and Hamiltonian dynamics. Mod. Phys. Lett. B 23, 3369–3386 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View. Springer, Berlin (1981)CrossRefGoogle Scholar
  54. 54.
    Scardigli, F.: Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment. Phys. Lett. B 452, 39–44 (1999)ADSCrossRefGoogle Scholar
  55. 55.
    Garay, L.G.: Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145–165 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    Bawaj, M., Biancofiore, C., Bonaldi, M., Bonfigli, F., Borrielli, A., Di Giuseppe, G., Marconi, L., Marino, F., Natali, R., Pontin, A., Prodi, G.A., Serra, E., Vitali, D., Marin, F.: Probing deformed commutators with macroscopic harmonic oscillators. Nat. Commun. 6, 7503–7510 (2015)CrossRefGoogle Scholar
  57. 57.
    Kempf, A.: Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 35, 4483–4496 (1994)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108–1118 (1995)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Gross, D.J., Mende, P.F.: String theory beyond the Planck scale. Nucl. Phys. B 303, 407–454 (1988)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Maggiore, M.: A generalized uncertainty principle in quantum gravity. Phys. Lett. B 304, 65–69 (1993)ADSCrossRefGoogle Scholar
  61. 61.
    Kock, B., Reyes, I.: Differentiable-path integrals in quantum mechanics. Int. J. Geom. Methods Mod. Phys. 12(09), 1550100–1550131 (2015)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Olivar-Romero, F., Rosas-Ortiz, O.: Factorization of the quantum fractional oscillator. J. Phys. Conf. Ser. 698, 012025 (2016)CrossRefGoogle Scholar
  63. 63.
    Simon, J.: Higher-derivative Lagrangians, non locality, problems, and solutions. Phys. Rev. D 41, 3720–3733 (1990)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Hossenfelder, S.: Minimal length scale scenarios for quantum gravity. Living Rev. Relativ. 16, 2 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    Castro, C.: On nonlinear quantum mechanics, noncommutative phase spaces, fractal-scale calculus and vacuum energy. Found. Phys. 40(11), 1712–1730 (2010)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    Kroger, H.: Fractal geometry in quantum mechanics, field theory and spin systems. Phys. Rep. 323(2), 81–181 (2000)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    Wio, H.S.: Path Integrals for Stochastic Processes. World Scientific Publishing Company, Singapore (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics and Physics DivisionsAthens Institute for Education and ResearchAthensGreece

Personalised recommendations