Advertisement

Journal of Statistical Physics

, Volume 172, Issue 5, pp 1327–1357 | Cite as

Hydrodynamic Limit of Boundary Driven Exclusion Processes with Nonreversible Boundary Dynamics

  • C. ErignouxEmail author
Article

Abstract

Using duality techniques, we derive the hydrodynamic limit for one-dimensional, boundary-driven, symmetric exclusion processes with different types of non-reversible dynamics at the boundary, for which the classical entropy method fails.

Keywords

Probability theory Statistical mechanics Nonequilibrium systems Boundary-driven particle systems Hydrodynamic limits Duality 

Notes

Acknowledgements

I would like to thank C. Landim for his help drafting this article, and for our numerous fruitful discussions.

References

  1. 1.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593636 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931)ADSCrossRefGoogle Scholar
  3. 3.
    Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265 (1931)ADSCrossRefGoogle Scholar
  4. 4.
    Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505 (1953)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107, 599 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Erignoux, C., Landim, C., Xu, T.: Stationary states of boundary-driven exclusion processes with non-reversible boundary dynamics (2017)Google Scholar
  7. 7.
    Baldasso, R., Menezes, O., Neumann, A., Souza, R.R.: Exclusion process with slow boundary. J. Stat. Phys. 167(5), 11121142 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Lecture Notes in Mathematics, p. 1501. Springer, Berlin (1991)CrossRefGoogle Scholar
  9. 9.
    De Masi, A., Ferrari, P.A., Lebowitz, J.L.: Reaction-diffusion equations for interacting particle systems. J. Stat. Phys. 44, 3 (1986)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Fundamental Principles of Mathematical Sciences, vol. 320. Springer, Berlin (1999)zbMATHGoogle Scholar
  11. 11.
    Giardinà, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and hidden symmetries in interacting particle systems. J. Stat. Phys. 135, 25–55 (2008)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Opoku, A., Redig, F.: Coupling and hydrodynamic limit for the inclusion process. J. Stat. Phys. 160(3), 532547 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lawler, G.: Intersections of Random Walks, Probability and Its Applications. Birkhäuser, Boston (1996)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IMPARio de JaneiroBrazil

Personalised recommendations