Advertisement

Journal of Statistical Physics

, Volume 172, Issue 5, pp 1210–1222 | Cite as

Absence of Dobrushin States for 2d Long-Range Ising Models

  • Loren CoquilleEmail author
  • Aernout C. D. van Enter
  • Arnaud Le Ny
  • Wioletta M. Ruszel
Article

Abstract

We consider the two-dimensional Ising model with long-range pair interactions of the form \(J_{xy}\sim |x-y|^{-\alpha }\) with \(\alpha >2\), mostly when \(J_{xy} \ge 0\). We show that Dobrushin states (i.e. extremal non-translation-invariant Gibbs states selected by mixed ± boundary conditions) do not exist. We discuss possible extensions of this result in the direction of the Aizenman–Higuchi theorem, or concerning fluctuations of interfaces. We also mention the existence of rigid interfaces in two long-range anisotropic contexts.

Keywords

Gibbs states Long-range Ising model Dobrushin states Interface fluctuations 

Mathematics Subject Classification

82B05 82B20 82B26 

Notes

Acknowledgements

LC and ALN have been partially supported by the CNRS PEPS Project “Ising” and visitor Grants by “Networks” and “European Women in Math”. ALN has benefited from the support of CNRS, Eurandom UMI CNRS 3022, and the Dutch Gravitation Grant “Networks”. We would like to thank Yvan Velenik for his comments and encouragements.

References

  1. 1.
    Aizenman, M.: Translation invariance and instability of phase coexistence in the two-dimensional Ising system. Commun. Math. Phys. 73(1), 83–94 (1980)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    van Beijeren, H.: Interface sharpness in the Ising system. Commun. Math. Phys. 40(1), 1–6 (1975)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bricmont, J., Lebowitz, J.L., Pfister, C.-E.: On the equivalence of boundary conditions. J. Stat. Phys. 21(5), 573–582 (1979)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bricmont, J., Lebowitz, J.L., Pfister, C.-E., Olivieri, E.: Non-translation invariant Gibbs states with coexisting phases. Commun. Math. Phys. 66(1), 1–20 (1979)ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Campanino, M., Olivieri, E., van Enter, A.C.D.: One-dimensional spin glasses with potential decay \(1/r^{1+\epsilon }\). Absence of phase transitions and cluster properties. Commun. Math. Phys. 108, 241–255 (1987)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Coquille, L.: Examples of DLR states which are not weak limits of finite volume Gibbs measures with deterministic boundary conditions. J. Stat. Phys. 159(4), 958–971 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Coquille, L., Velenik, Y.: A finite-volume version of Aizenman-Higuchi theorem for the \(2d\) Ising model. Probab. Theory Relat. Fields 153(1–2), 25–44 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dobrushin, R.L.: Gibbs state describing coexistence of phases for a three-dimensional Ising model. Theory Probab. Appl. 17(4), 582–600 (1973)zbMATHCrossRefGoogle Scholar
  9. 9.
    Dobrushin, R.L., Shlosman, S.: The problem of translation invariance of Gibbs states at low temperatures. Math. Phys. Rev. 5, 53–195 (1985)MathSciNetzbMATHGoogle Scholar
  10. 10.
    van Enter, A.C.D.: Upper bounds on correlation decay for one-dimensional long-range spin-glass models. J. Stat. Phys. 47, 905–910 (1987)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)zbMATHCrossRefGoogle Scholar
  12. 12.
    Fröhlich, J., Pfister, C.-E.: On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Commun. Math. Phys. 81(2), 277–298 (1981)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Fröhlich, J., Pfister, C.-E.: Absence of crystalline ordering in two dimensions. Commun. Math. Phys. 104(4), 697–700 (1986)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Fröhlich, J., Zegarlinski, B.: The phase transition in the discrete Gaussian chain with \(1/r^2\) interaction energy. J. Stat. Phys. 63(3–4), 455–485 (1991)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Fröhlich, J., Israel, R., Lieb, E.H., Simon, B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62(1), 1–34 (1978)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Gallavotti, G.: The phase separation line in the two-dimensional Ising model. Commun. Math. Phys. 27(2), 103–136 (1972)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Gallavotti, G., Miracle-Solé, S.: Equilibrium states of the Ising model in the two-phase region. Phys. Rev. B 5(7), 2555–2559 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    Gates, D.J., Penrose, O.: The van der Waals limit for classical systems. III. Deviation from the van der Waals–Maxwell theory. Commun. Math. Phys. 17(3), 194–209 (1970)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Georgii, H.-O.: Gibbs Measures and Phase Transitions. De Gruyter, Berlin (2011)zbMATHCrossRefGoogle Scholar
  20. 20.
    Gertzik, V.M.: Analyticity of correlation functions for lattice systems with nonfinite potential in the multiphased case. In: Dobrushin, R.L., Griffeath, D., Sinai, Y.G. (eds.) Multicomponent Random Systems, pp. 211–238. Marcel Dekker, New York (1980)Google Scholar
  21. 21.
    Ginibre, J., Grossmann, A., Ruelle, D.: Condensation of lattice gases. Commun. Math. Phys. 3(3), 187–193 (1966)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Griffiths, R.B.: Correlations in Ising ferromagnets. III. A mean-field bound for binary correlations. Commun. Math. Phys. 6(2), 121–127 (1967)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Higuchi, Y.: On limiting Gibbs states of the two-dimensional Ising models. Publ. Res. Inst. Math. Sci. 14(1), 53–69 (1978)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Higuchi, Y.: On the absence of non-translation invariant Gibbs states for the two-dimensional Ising model. In: Fritz, J., Lebowitz, J., Szász, D. (eds.) Random Fields, Vol. I (Esztergom, 1979), volume 27 of Colloq. Math. Soc. János Bolyai. North Holland, Amsterdam (1981)Google Scholar
  25. 25.
    Kunz, H., Pfister, C.-E.: First order phase transition in the plane rotator ferromagnetic model in two dimensions. Commun. Math. Phys. 46(3), 245–251 (1976)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Lebowitz, J.L.: Coexistence of phases in Ising ferromagnets. J. Stat. Phys. 16(6), 463–476 (1977)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Merola, I.: On the absence of non-translationally invariant gibbs states in two dimensions. Markov Process. Relat. Fields 6(4), 517–541 (2000)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Messager, A., Miracle-Sole, S.: Equilibrium states of the two-dimensional Ising model in the two-phase region. Commun. Math. Phys. 40(2), 187–196 (1975)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Messager, A., Miracle-Sole, S.: Correlation functions and boundary conditions in the ising ferromagnet. J. Stat. Phys. 17(4), 245–262 (1977)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Pisani, C., Thompson, C.J.: Generalized classical theory of magnetism. J. Stat. Phys. 46(5–6), 971–982 (1987)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Raoufi, A.: Translation-invariant Gibbs states of Ising model: general setting. arXiv:1710.07608 [math.PR] (2017).
  32. 32.
    Russo, L.: The infinite cluster method in the two-dimensional Ising model. Commun. Math. Phys. 67(3), 251–266 (1979)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, Institut FourierGrenobleFrance
  2. 2.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands
  3. 3.LAMA UMR CNRS 8050, UPEC, Université Paris-EstCréteil CedexFrance
  4. 4.Eurandom, TU/e EindhovenEindhovenThe Netherlands
  5. 5.Delft Institute of Applied MathematicsTechnical University DelftDelftThe Netherlands

Personalised recommendations