Lyapunov-Based Anomaly Detection in Highly-Clustered Networks
- 66 Downloads
Abstract
Network formation models explain the dynamics of the structure of connections using mechanisms that operate under different principles for establishing and removing edges. The Jackson–Rogers model is a generic framework that applies the principle of triadic closure to networks that grow by the addition of new nodes and new edges over time. Past work describes the limit distribution of the in-degree of the nodes based on a continuous-time approximation. Here, we introduce a discrete-time approach of the dynamics of the in- and out-degree distributions of a variation of the model. Furthermore, we characterize the limit distributions and the expected value of the average degree as equilibria, and prove that the equilibria are asymptotically stable. Finally, we use the stability properties of the model to propose a detection criterion for anomalies in the edge formation process.
Keywords
Network formation models Stability Anomalous event detectionMathematics Subject Classification
05C82 37B25 94C12Notes
Acknowledgements
This research was supported in part by the Center of Excellence and Appropriation in Big Data and Data Analytics (CAOBf at the Pontificia Universidad Javeriana, the Ministry of Information Technologies and Telecommunications of Colombia (MinTIC), and the Colombian Administrative Department of Science, Technology and Innovation (COLCIENCIAS), under Grant No. FP44842-546-2015.
References
- 1.Newman, M.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323 (2005)ADSCrossRefGoogle Scholar
- 2.Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 3.Simon, H.A.: On a class of skew distribution functions. Biometrika 42(3/4), 425 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 5.Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65(2), 026107 (2002)ADSCrossRefGoogle Scholar
- 6.Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 7.Onody, R.N., de Castro, P.A.: Nonlinear Barabási–Albert network. Phys. A 336(3–4), 491 (2004)CrossRefGoogle Scholar
- 8.Li, M., Gao, L., Fan, Y., Wu, J., Di, Z.: Emergence of global preferential attachment from local interaction. N. J. Phys. 12(4), 043029 (2010)CrossRefGoogle Scholar
- 9.Choromanski, K., Matuszak, M., Miekisz, J.: Scale-free graph with preferential attachment and evolving internal vertex structure. J. Stat. Phys. 151(6), 1175 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 10.Fagiolo, G.: Clustering in complex directed networks. Phys. Rev. E 76(2), 026107 (2007)ADSMathSciNetCrossRefGoogle Scholar
- 11.Klimek, P., Thurner, S.: Triadic closure dynamics drives scaling laws in social multiplex networks. N. J. Phys. 15(6), 063008 (2013)MathSciNetCrossRefGoogle Scholar
- 12.Newman, M.E.J.: Properties of highly clustered networks. Phys. Rev. E 68, 026121 (2003)ADSCrossRefGoogle Scholar
- 13.Hashmi, A., Zaidi, F., Sallaberry, A., Mehmood, T.: In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 310–314 (2012)Google Scholar
- 14.Kaluza, P., Kölzsch, A., Gastner, M.T., Blasius, B.: The complex network of global cargo ship movements. J. R. Soc. Interface 7(78), 1093–1103 (2010)CrossRefGoogle Scholar
- 15.Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440 (1998)ADSCrossRefzbMATHGoogle Scholar
- 16.Boykin, P.O., Roychowdhury, V.P.: Leveraging social networks to fight spam. Computer 38(4), 61 (2005)CrossRefGoogle Scholar
- 17.Feld, S.L.: The focused organization of social ties. Am. J. Sociol. 86(5), 1015 (1981)CrossRefGoogle Scholar
- 18.Jackson, M.O., Rogers, B.W.: Meeting strangers and friends of friends: how random are social networks? Am. Econ. Rev. 97(3), 890 (2007)CrossRefGoogle Scholar
- 19.Moriano, P., Finke, J.: In: Proceedings of the American Control Conference, pp. 1088–1093. Washington, DC(2013)Google Scholar
- 20.Fernández, I., Finke, J.: In: Proceedings of the American Control Conference, pp. 776–781. Boston (2016)Google Scholar
- 21.Fernández, I., Finke, J.: In: Proceedings of the Conference on Decision and Control, pp. 1625–1630. Osaka (2015)Google Scholar
- 22.Ruiz, D., Finke, J.: In: Proceedings of the Conference on Decision and Control. Melbourne (2017)Google Scholar
- 23.Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633 (2000)ADSCrossRefGoogle Scholar
- 24.Barabási, A.L., Pósfai, M.: Network Science. Cambridge University Press, Cambridge (2016)Google Scholar
- 25.Butler, K., Stephens, M.A.: The distribution of a sum of independent binomial random variables. Methodol. Comput. Appl. Probab. 19(2), 1–15 (2016)MathSciNetGoogle Scholar
- 26.Khalil, H.: Nonlinear Systems, 3rd edn. Pearson, Upper Saddle River (2001)Google Scholar
- 27.Burgess, K., Passino, K.: Stability analysis of load balancing systems. Int. J. Control 61(2), 357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar