Advertisement

Journal of Statistical Physics

, Volume 172, Issue 3, pp 718–741 | Cite as

The Free Energy in the Derrida–Retaux Recursive Model

  • Yueyun Hu
  • Zhan Shi
Article
  • 35 Downloads

Abstract

We are interested in a simple max-type recursive model studied by Derrida and Retaux (J Stat Phys 156:268–290, 2014) in the context of a physics problem, and find a wide range for the exponent in the free energy in the nearly supercritical regime.

Keywords

Max-type recursive model Free energy Multi-scale analysis 

Mathematics Subject Classification

60J80 82B44 

Notes

Acknowledgements

We are grateful to Bernard Derrida who introduced us to the problem, and with whom we have had regular discussions for two years. We wish to thank Nina Gantert for many discussions, Quentin Berger for enlightenment on renormalisation models, and Chunhua Ma, Bastien Mallein and Quan Shi for pointing out [20] to us. Two anonymous referees have carefully read the manuscript; their insightful comments have led to improvements in the paper. The project was partly supported by ANR MALIN (ANR-16-CE93-0003); Y.H. also acknowledges support from ANR SWiWS (ANR-17-CE40-0032).

References

  1. 1.
    Aldous, D.J., Bandyopadhyay, A.: A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15, 1047–1110 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alexander, K.S., Sidoravicius, V.: Pinning of polymers and interfaces by random potentials. Ann. Appl. Probab. 16, 636–669 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alexander, K.S., Zygouras, N.: Quenched and annealed critical points in polymer pinning models. Commun. Math. Phys. 291, 659–689 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Athreya, K.B., Ney, P.E.: Branching Processes. Springer, New York (1972)CrossRefzbMATHGoogle Scholar
  5. 5.
    Berger, Q., Lacoin, H.: Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift. J. Inst. Math. Jussieu 17, 305–346 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Berger, Q., Toninelli, F.L.: Hierarchical pinning model in correlated random environment. Ann. Inst. H. Poincaré Probab. Stat. 49, 781–816 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Collet, P., Eckmann, J.P., Glaser, V., Martin, A.: A spin glass with random couplings. J. Stat. Phys. 36, 89–106 (1984)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Collet, P., Eckmann, J.P., Glaser, V., Martin, A.: Study of the iterations of a mapping associated to a spin-glass model. Commun. Math. Phys. 94, 353–370 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    den Hollander, F.: Random Polymers. École d’Été de Probabilités de Saint-Flour XXXVII. Lecture Notes in Mathematics, vol. 1974. Springer, Berlin (2009)Google Scholar
  10. 10.
    Derrida, B., Giacomin, G., Lacoin, H., Toninelli, F.L.: Fractional moment bounds and disorder relevance for pinning models. Commun. Math. Phys. 287, 867–887 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Derrida, B., Hakim, V., Vannimenus, J.: Effect of disorder on two-dimensional wetting. J. Stat. Phys. 66, 1189–1213 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Derrida, B., Retaux, M.: The depinning transition in presence of disorder: a toy model. J. Stat. Phys. 156, 268–290 (2014)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Forgacs G., Luck J.M., Nieuwenhuizen Th.M., Orland H.: Wetting of a disordered substrate: exact critical behavior in two dimensions. Phys. Rev. Lett. 57, 2184–2187 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    Garel, T., Monthus, C.: Numerical study of the disordered PolandScheraga model of DNA denaturation. J. Stat. Mech. Theory Exp. 2005(06), P06004 (2005)CrossRefGoogle Scholar
  15. 15.
    Giacomin, G.: Random Polymer Models. Imperial College Press/World Scientific, London/Singapore (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Giacomin, G.: Disorder and Critical Phenomena Through Basic Probability Models. École d’Été de Probabilités de Saint-Flour XL. Lecture Notes in Mathematics, vol. 2025. Springer, Berlin (2011)Google Scholar
  17. 17.
    Giacomin, G., Toninelli, F.L.: Smoothing effect of quenched disorder on polymer depinning transitions. Commun. Math. Phys. 266, 1–16 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Giacomin, G., Lacoin, H., Toninelli, F.L.: Hierarchical pinning models, quadratic maps and quenched disorder. Probab. Theor. Relat. Fields 147, 185–216 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Giacomin, G., Lacoin, H., Toninelli, F.L.: Marginal relevance of disorder for pinning models. Commun. Pure Appl. Math. 63, 233–265 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Goldschmidt, C., Przykucki, M.: Parking on a random tree (2016). arXiv:1610.08786
  21. 21.
    Kesten, H., Stigum, B.P.: A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Stat. 37, 1211–1223 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kunz, H., Livi, R.: DNA denaturation and wetting in the presence of disorder. Eur. Phys. Lett. 99, 30001 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Lacoin, H.: Hierarchical pinning model with site disorder: disorder is marginally relevant. Probab. Theor. Relat. Fields 148, 159–175 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lerouvillois, V.: Polymer pinning models and condition on the existence of a phase transition. Preprint (2015)Google Scholar
  25. 25.
    Lyons, R., Pemantle, R., Peres, Y.: Conceptual proofs of \(L\ln L\) criteria for mean behavior of branching processes. Ann. Probab. 23, 1125–1138 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press, New York (2016)CrossRefzbMATHGoogle Scholar
  27. 27.
    Monthus, C.: Strong disorder renewal approach to DNA denaturation and wetting: typical and large deviation properties of the free energy (2016). arXiv:1611.00501
  28. 28.
    Monthus, C., Garel, T.: Critical points of quadratic renormalizations of random variables and phase transitions of disordered polymer models on diamond lattices. Phys. Rev. E 77(2), 021132 (2008)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Shi, Z.: Branching Random Walks. École d’été Saint-Flour XLII (2012). Lecture Notes in Mathematics, vol. 2151. Springer, Berlin (2015)Google Scholar
  30. 30.
    Tang, L.H., Chaté, H.: Rare-event induced binding transition of heteropolymers. Phys. Rev. Lett. 86, 830–833 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Toninelli, F.L.: A replica-coupling approach to disordered pinning models. Commun. Math. Phys. 280, 389–401 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Toninelli, F.L.: Disordered pinning models and copolymers: beyond annealed bounds. Ann. Appl. Probab. 18, 1569–1587 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LAGAUniversité Paris XIIIVilletaneuseFrance
  2. 2.LPMAUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations