Advertisement

Journal of Statistical Physics

, Volume 171, Issue 5, pp 802–821 | Cite as

The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

  • Achillefs Tzioufas
Article
  • 95 Downloads

Abstract

We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

Keywords

Oriented bond percolation Central limit theorems Association Contact process 

Mathematics Subject Classification

Primary 60K35 Secondary 82B43 

Notes

Acknowledgements

This work has been supported during non-overlapping periods of time by CONICET, by FAPESP grant 2016/03988-5, and, currently, by PNPD/CAPES.

References

  1. 1.
    Ahlswede, R., Daykin, D.E.: An inequality for the weights of two families of sets, their unions and intersections. Probab. Theory Relat. Fields 43(3), 183–185 (1978)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, New York (2016)zbMATHGoogle Scholar
  3. 3.
    Anscombe, F.: Large-sample theory of sequential estimation. Math. Proc. Camb. Philos. Soc. 48(4), 600–607 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bezuidenhout, C., Gray, L.: Critical attractive spin systems. Ann. Probab. 22, 1160–1194 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bezuidenhout, C., Grimmett, G.: The critical contact process dies out. Ann. Probab. 18, 1462–1482 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1995)zbMATHGoogle Scholar
  7. 7.
    Birkel, T.: The invariance principle for associated processes. Stoch. Process. Appl. 27, 57–71 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Broadbent, S.R., Hammersley, J.M.: Percolation processes: I. Crystals and mazes. Math. Proc. Camb. Philos. Soc. 53(3), 629–641 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bulinski, A., Shashkin, A.: Limit Theorems for Associated Random Fields and Related Systems, vol. 10. World Scientific, Hackensack (2007)zbMATHGoogle Scholar
  11. 11.
    Christofides, T.: Maximal inequalities for demimartingales and a strong law of large numbers. Stat. Probab. Lett. 50(4), 357–363 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cox, J., Griffeath, D.: Occupation time limit theorems for the voter model. Ann. Probab. 11, 876–893 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cox, T., Grimmett, G.: Central limit theorems for associated random variables and the percolation model. Ann. Probab. 12, 514–528 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Durrett, R.: On the growth of one dimensional contact processes. Ann. Probab. 8, 890–907 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Durrett, R.: Oriented percolation in two dimensions. Ann. Probab. 12, 999–1040 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Durrett, R.: Lecture Notes on Particle Systems and Percolation. Wadsworth, Belmont (1988)zbMATHGoogle Scholar
  17. 17.
    Durrett, R.: The contact process, 1974-1989. Cornell University, Mathematical Sciences Institute (1991)Google Scholar
  18. 18.
    Durrett, R.: Ten Lectures on Particle Systems. Lecture Notes in Math, vol. 1608. Springer, New York (1995)zbMATHGoogle Scholar
  19. 19.
    Durrett, R.: Probability: Theory and Examples. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Durrett, R., Griffeath, D.: Contact processes in several dimensions. Probab. Theory Relat. Fields 59(4), 535–552 (1982)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Durrett, R., Griffeath, D.: Supercritical contact processes on \({\mathbb{Z}}\). Ann. Probab. 11, 1–5 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Esary, J.D., Proschan, F., Walkup, D.W.: Association of random variables, with applications. Ann. Math. Stat. 38(5), 1466–1474 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22(2), 89–103 (1971)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Georgii, H.O., Häggström, O., Maes, C.: The random geometry of equilibrium phases. Phase Transit. Crit. Phenom. 18, 1–142 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Galves, A., Presutti, E.: Edge fluctuations for the one-dimensional supercritical contact process. Ann. Probab. 15, 1131–1145 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Griffeath, D.: Additive and Cancellative Interacting Particle Systems. Springer, New York (1979)CrossRefzbMATHGoogle Scholar
  27. 27.
    Griffeath, D.: The basic contact processes. Stoch. Proc. Appl. 11, 151–185 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  29. 29.
    Grimmett, G.: Probability on Graphs: Random Processes on Graphs and Lattices. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  30. 30.
    Gut, A.: Stopped Random Walks. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  31. 31.
    Gut, A.: Probability: A Graduate Course, 2nd edn. Springer, New York (2012)zbMATHGoogle Scholar
  32. 32.
    Harris, T.E.: A lower bound for the critical probability in a certain percolation process. Proc. Camb. Philos. Soc. 56, 13–20 (1960)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Harris, T.E.: Contact interactions on a lattice. Ann. Probab. 2, 969–988 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Harris, T.E.: A correlation inequality for Markov processes in partially ordered state spaces. Ann. Probab. 5, 451–454 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Harris, T.E.: Additive set-valued Markov processes and graphical methods. Ann. Probab. 6, 355–378 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Holley, R.: Remarks on the FKG inequalities. Commun. Math. Phys. 36(3), 227–231 (1974)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Kuczek, T.: The central limit theorem for the right edge of supercritical oriented percolation. Ann. Probab. 17, 1322–1332 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Lebowitz, J.L.: Bounds on the correlations and analyticity properties of ferromagnetic Ising spin systems. Commun. Math. Phys. 28(4), 313–321 (1972)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  40. 40.
    Liggett, T.M.: An improved subadditive ergodic theorem. Ann. Probab. 13, 1279–1285 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  42. 42.
    Liggett, T.M.: Continuous Time Markov Processes: An Introduction, vol. 113. American Mathematical Soc, Providence, RI (2010)zbMATHGoogle Scholar
  43. 43.
    Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74(2), 119–128 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Newman, C.M., Wright, L.: An invariance principle for certain dependent sequences. Ann. Probab. 9, 671–675 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Newman, C.M.: A general central limit theorem for FKG systems. Commun. Math. Phys. 91(1), 75–80 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Newman, C.M.: Asymptotic Independence and Limit Theorems for Positively and Negatively Dependent Random Variables. Lecture Notes-Monograph Series, pp. 127–140 (1984)Google Scholar
  47. 47.
    Oliveira, P.E.: Asymptotics for Associated Random Variables. Springer, New York (2012)CrossRefzbMATHGoogle Scholar
  48. 48.
    Penrose, M.D.: A central limit theorem with applications to percolation, epidemics and Boolean models. Ann. Probab. 29, 1515–1546 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Penrose, M.D.: Multivariate spatial central limit theorems with applications to percolation and spatial graphs. Ann. Probab. 33(5), 1945–1991 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Rao, B.P.: Associated Sequences, Demimartingales and Nonparametric Inference. Springer, New York (2012)zbMATHGoogle Scholar
  51. 51.
    Rényi, A.: On the central limit theorem for the sum of a random number of independent random variables. Acta Math. Hung. 11, 97–102 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Schonmann, R.: Central limit theorem for the contact process. Ann. Probab. 14, 1291–1295 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Sung, S.: A note on the Hajek-Renyi inequality for associated random variables. Stat. Probab. Lett. 78(7), 885–889 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Tzioufas, A.: The law of the iterated logarithm for supercritical 2D oriented percolation (in preparation)Google Scholar
  55. 55.
    Williams, D.: Probability with Martingales. Cambridge University Press, Chicago (1991)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Matemática e EstatísticaUniversidade de São PauloSão PauloBrazil

Personalised recommendations