Advertisement

Journal of Statistical Physics

, Volume 173, Issue 3–4, pp 1252–1285 | Cite as

From Ecology to Finance (and Back?): A Review on Entropy-Based Null Models for the Analysis of Bipartite Networks

  • Mika J. Straka
  • Guido Caldarelli
  • Tiziano Squartini
  • Fabio Saracco
Article

Abstract

Bipartite networks provide an insightful representation of many systems, ranging from mutualistic networks of species interactions to investment networks in finance. The analyses of their topological structures have revealed the ubiquitous presence of properties which seem to characterize many—apparently different—systems. Nestedness, for example, has been observed in biological plant-pollinator as well as in country-product exportation networks. Due to the interdisciplinary character of complex networks, tools developed in one field, for example ecology, can greatly enrich other areas of research, such as economy and finance, and vice versa. With this in mind, we briefly review several entropy-based bipartite null models that have been recently proposed and discuss their application to real-world systems. The focus on these models is motivated by the fact that they show three very desirable features: analytical character, general applicability, and versatility. In this respect, entropy-based methods have been proven to perform satisfactorily both in providing benchmarks for testing evidence-based null hypotheses and in reconstructing unknown network configurations from partial information. Furthermore, entropy-based models have been successfully employed to analyze ecological as well as economic systems. As an example, the application of entropy-based null models has detected early-warning signals, both in economic and financial systems, of the 2007–2008 world crisis. Moreover, they have revealed a statistically-significant export specialization phenomenon of country export baskets in international trade, a result that seems to reconcile Ricardo’s hypothesis in classical economics with recent findings on the (empirical) diversification industrial production at the national level. Finally, these null models have shown that the information contained in the nestedness is already accounted for by the degree sequence of the corresponding graphs.

Keywords

Bipartite networks Exponential random graph Entropy-based null models Nestedness Systemic risk Trade specialization 

Notes

Acknowledgements

This work was supported by the EU Projects CoeGSS (Grant No. 676547), MULTIPLEX (Grant No. 317532), Openmaker (Grant No. 687941), SoBigData (Grant No. 654024), and the FET Projects SIMPOL (Grant No. 610704), DOLFINS (Grant No. 640772).

References

  1. 1.
    Allen, F., Gale, D.: Financial contagion. J. Polit. Econ. 108(1), 1–33 (2000).  https://doi.org/10.1086/262109 CrossRefGoogle Scholar
  2. 2.
    Allesina, S., Tang, S.: Stability criteria for complex ecosystems. Nature. 483(7388), 205–208 (2012).  https://doi.org/10.1038/nature10832 ADSCrossRefGoogle Scholar
  3. 3.
    Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Loyola, R.D., Ulrich, W.: A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(8), 1227–1239 (2008).  https://doi.org/10.1111/j.0030-1299.2008.16644.x CrossRefGoogle Scholar
  4. 4.
    Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–461 (2007).  https://doi.org/10.1038/nrg2102 CrossRefGoogle Scholar
  5. 5.
    Angelini, O., Cristelli, M., Zaccaria, A., Pietronero, L.: The complex dynamics of products and its asymptotic properties. PLoS ONE 12(5), 1–20 (2017).  https://doi.org/10.1371/journal.pone.0177360 CrossRefGoogle Scholar
  6. 6.
    Annunziata, M.A., Petri, A., Pontuale, G., Zaccaria, A.: How log-normal is your country? An analysis of the statistical distribution of the exported volumes of products. Eur. Phys. J. Spec. Top. 1995(225), 1985–1995 (2016).  https://doi.org/10.1140/epjst/e2015-50320-7 CrossRefGoogle Scholar
  7. 7.
    Arinaminpathy, N., Kapadia, S., May, R.M.: Size and complexity in model financial systems. PNAS 109(45), 18338–18343 (2012).  https://doi.org/10.1073/pnas.1213767109 ADSCrossRefGoogle Scholar
  8. 8.
    Atmar, W., Patterson, B.D.: The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96(3), 373–382 (1993).  https://doi.org/10.1007/BF00317508 ADSCrossRefGoogle Scholar
  9. 9.
    Azaele, S., Suweis, S., Grilli, J., Volkov, I., Banavar, J.R., Maritan, A.: Statistical mechanics of ecological systems: neutral theory and beyond. Rev. Mod. Phys. (2016).  https://doi.org/10.1103/RevModPhys.88.035003
  10. 10.
    Baiser, B., Elhesha, R., Kahveci, T.: Motifs in the assembly of food web networks. Oikos 125(4), 480–491 (2016).  https://doi.org/10.1111/oik.02532 CrossRefGoogle Scholar
  11. 11.
    Balassa, B.: Trade liberalization and ’revealed’ comparative advantage. Manch. Sch. Econ. Soc. Stud. 33, 99–123 (1965)CrossRefGoogle Scholar
  12. 12.
    Barigozzi, M., Fagiolo, G., Garlaschelli, D.: Multinetwork of international trade: a commodity-specific analysis. Phys. Rev. E 81(4), 046,104 (2010).  https://doi.org/10.1103/PhysRevE.81.046104
  13. 13.
    Bastolla, U., Fortuna, Ma., Pascual-García, A., Ferrera, A., Luque, B., Bascompte, J.: The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458(7241), 1018–1020 (2009).  https://doi.org/10.1038/nature07950 ADSCrossRefGoogle Scholar
  14. 14.
    Battiston, S., Farmer, J.D., Flache, A., Garlaschelli, D., Haldane, A., Heesterbeek, H., Hommes, C., Jaeger, C., May, R.M., Scheffer, M.: Complexity theory and financial regulation. Science 351(6275), 818–819 (2016).  https://doi.org/10.1126/science.aad0299 ADSCrossRefGoogle Scholar
  15. 15.
    Battiston, S., Puliga, M., Kaushik, R., Tasca, P., Caldarelli, G.: DebtRank: too central to Fail? Financial networks, the FED and systemic risk. Sci. Rep. 2, 1–6 (2012).  https://doi.org/10.1038/srep00541 CrossRefGoogle Scholar
  16. 16.
    Bonanno, G., Caldarelli, G., Lillo, F., Mantegna, R.N.: Topology of correlation based minimal spanning trees in real and model markets. Phys. Rev. E 046130, 17–20 (2003).  https://doi.org/10.1103/PhysRevE.68.046130 CrossRefGoogle Scholar
  17. 17.
    Bonanno, G., Caldarelli, G., Lillo, F., Micciché, S., Vandewalle, N., Mantegna, R.N.: Networks of equities in financial markets. Eur. Phys. J. B 38(2), 363–371 (2004).  https://doi.org/10.1140/epjb/e2004-00129-6 ADSCrossRefGoogle Scholar
  18. 18.
    Borge-Holthoefer, J., Baños, R.A., Gracia-lázaro, C., Moreno, Y.: Emergence of consensus as a modular-to-nested transition in communication dynamics. Sci. Rep. 7, 1–9 (2017).  https://doi.org/10.1038/srep41673 CrossRefGoogle Scholar
  19. 19.
    Brunnermeier, M.K.: Deciphering the liquidity and credit crunch 2007–2008. J. Econ. Perspect. 23(1), 77–100 (2009).  https://doi.org/10.1257/jep.23.1.77 CrossRefGoogle Scholar
  20. 20.
    Caccioli, F., Shrestha, M., Moore, C., Farmer, J.D.: Stability analysis of financial contagion due to overlapping portfolios. J. Bank. Financ. 46(Supplement C), 233–245 (2014).  https://doi.org/10.1016/j.jbankfin.2014.05.021 CrossRefGoogle Scholar
  21. 21.
    Cadot, O., Carrere, C., Strauss-Kahn, V.: Export diversification: what’s behind the hump? Rev. Econ. Stat. 93(2), 590–605 (2011).  https://doi.org/10.1162/REST_a_00078 CrossRefGoogle Scholar
  22. 22.
    Caldarelli, G., Cristelli, M., Gabrielli, A., Pietronero, L., Scala, A., Tacchella, A.: A network analysis of countries’ export flows: firm grounds for the building blocks of the economy. PLoS ONE 7(10), 1–17 (2012).  https://doi.org/10.1371/journal.pone.0047278 CrossRefGoogle Scholar
  23. 23.
    Cane, J.H., Minckley, R.L., Kervin, L.J., Roulston, T.H., Williams, N.M.: Complex responses within a desert bee guild (Hymenoptera: Apiformes) to urban habitat fragmentation. Ecol. Appl. 16(2), 632–644 (2006).  https://doi.org/10.1890/1051-0761(2006)016[0632:CRWADB]2.0.CO;2 CrossRefGoogle Scholar
  24. 24.
    Cerina, F., Riccaboni, M.: World input-output network world input-output network. PLoS ONE 10(7), 1–21 (2014).  https://doi.org/10.1371/journal.pone.0134025 CrossRefGoogle Scholar
  25. 25.
    Chan-Lau, J.A., Espinosa, M., Giesecke, K., Solé, J.A.: Assessing the systemic implications of financial linkages. IMF Glob. Financ. Stab. Rep. 2, 1–38 (2009). https://ssrn.com/abstract=1417920
  26. 26.
    Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Ann. Comb. 6, 125–145 (2002). https://link.springer.com/content/pdf/10.1007/PL00012580.pdf MathSciNetCrossRefGoogle Scholar
  27. 27.
    Connor, E.F., Simberloff, D.: The assembly of species communities: chance or competition? Ecology 60(6), 1132 (1979).  https://doi.org/10.2307/1936961 CrossRefGoogle Scholar
  28. 28.
    Cont, R., Wagalath, L.: Fire sales forensics: measuring endogenous risk. Math. Financ. 26(4), 835–866 (2016).  https://doi.org/10.1111/mafi.12071 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Cristelli, M., Gabrielli, A., Tacchella, A., Caldarelli, G., Pietronero, L.: Measuring the intangibles: a metrics for the economic complexity of countries and products. PLoS ONE 8(8), e70726 (2013).  https://doi.org/10.1371/journal.pone.0070726 ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Cristelli, M., Tacchella, A., Pietronero, L.: The heterogeneous dynamics of economic complexity. PLoS ONE 10(2), 1–15 (2015).  https://doi.org/10.1371/journal.pone.0117174 CrossRefGoogle Scholar
  31. 31.
    Di Gangi, D., Lillo, F., Pirino, D.: Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction. SSRN Electron. J. (2015).  https://doi.org/10.2139/ssrn.2639178. https://ssrn.com/abstract=2639178
  32. 32.
    Diamond, J.M.: Assembly of Species Communities. Belknap Press, Cambridge, MA (1975).  https://doi.org/10.2307/1936961 CrossRefGoogle Scholar
  33. 33.
    Diamond, J.M., Gilpin, M.E.: Examination of the null model of connor and simberloff for species co-occurrences on Islands. Oecologia 52(1), 64–74 (1982).  https://doi.org/10.1007/BF00349013 ADSCrossRefGoogle Scholar
  34. 34.
    Donnelly, R., Marzluff, J.M.: Importance of reserve size and landscape context to urban bird conservation. Conserv. Biol. 18(3), 733–745 (2004).  https://doi.org/10.1111/j.1523-1739.2004.00032.x CrossRefGoogle Scholar
  35. 35.
    Dormann, C.F., Fründ, J., Bluthgen, N., Gruber, B.: Indices, graphs and null models: analysing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).  https://doi.org/10.2174/1874213000902010007 CrossRefGoogle Scholar
  36. 36.
    Dueñas, M., Fagiolo, G.: Modeling the International-Trade Network: a gravity approach. J. Econ. Interact. Coord. 8(1), 155–178 (2013).  https://doi.org/10.1007/s11403-013-0108-y CrossRefGoogle Scholar
  37. 37.
    Eisenberg, L., Noe, T.H.: Systemic risk in financial systems. Manag. Sci. 47(2), 236–249 (2001)CrossRefGoogle Scholar
  38. 38.
    Elton, C.S.: Animal Ecology. Sidgwick and Jackson, London (1927)Google Scholar
  39. 39.
    Erdos, P., Rényi, A.: On random graphs I. Publ. Math. Debr. 6, 290–297 (1959)zbMATHGoogle Scholar
  40. 40.
    Fagiolo, G., Reyes, J., Schiavo, S.: World-trade web: topological properties, dynamics, and evolution. Phys. Rev. E (2009).  https://doi.org/10.1103/PhysRevE.79.036115
  41. 41.
    Fahrig, L.: Relative effects of habitat loss and fragmentation on population extinction. J. Wildl. Manag. 61(3), 603–610 (1997).  https://doi.org/10.2307/3802168 CrossRefGoogle Scholar
  42. 42.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010).  https://doi.org/10.1016/j.physrep.2009.11.002 ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Furceri, D., Mourougane, A.: The effect of financial crises on potential output: new empirical evidence from OECD countries. J. Macroecono. 34(3), 822–832 (2012).  https://doi.org/10.1016/j.jmacro.2012.05.010 CrossRefGoogle Scholar
  44. 44.
    Gai, P., Kapadia, S.: Contagion in financial networks. Proc. R. Soc. 466(2120), 2401–2423 (2010).  https://doi.org/10.1257/jel.20151228 CrossRefGoogle Scholar
  45. 45.
    Galeano, J., Fernandez, M., Hidalgo, C.: ipartite networks provide new insights on international trade markets. Am. Inst. Math. Sci. 7(3), 399–413 (2012)zbMATHGoogle Scholar
  46. 46.
    Garlaschelli, D., Loffredo, M.I.: Fitness-dependent topological properties of the world trade web. Phys. Rev. Lett. 93, 188,701, (2004).  https://doi.org/10.1103/PhysRevLett.93.188701
  47. 47.
    Garlaschelli, D., Loffredo, M.I.: Maximum likelihood: extracting unbiased information from complex networks. Phys. Rev. E 78(1), 1–5 (2008).  https://doi.org/10.1103/PhysRevE.78.015101 CrossRefGoogle Scholar
  48. 48.
    Gilpin, M.E., Diamond, J.M.: Factors contributing to non-randomness in species Co-occurrences on Islands. Oecologia 52(1), 75–84 (1982).  https://doi.org/10.1007/BF00349014 ADSCrossRefGoogle Scholar
  49. 49.
    Greenwood, R., Landier, A., Thesmar, D.: Vulnerable banks. J. Financ. Econ. 115(3), 471–485 (2015).  https://doi.org/10.1016/j.jfineco.2014.11.006 CrossRefGoogle Scholar
  50. 50.
    Gualdi, S., Cimini, G., Primicerio, K., di Clemente, R., Challet, D.: Statistically validated network of portfolio overlaps and systemic risk. Sci. Rep. 6, 39,467 (2016).  https://doi.org/10.1038/srep39467 CrossRefGoogle Scholar
  51. 51.
    Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Module identification in bipartite and directed networks. Phys. Rev. E 76, 036,102 (2007).  https://doi.org/10.1103/PhysRevE.76.036102
  52. 52.
    Harte, J.: Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics. Oxford University Press, Oxford (2011)CrossRefGoogle Scholar
  53. 53.
    Hausmann, R., Hidalgo, C.A.: The network structure of economic output. J. Econ. Growth 16(October), 309–342 (2011).  https://doi.org/10.1007/s10887-011-9071-4 CrossRefGoogle Scholar
  54. 54.
    Hidalgo, C.A., Hausmann, R.: The building blocks of economic complexity. Proc. Natl. Acad. Sci. USA. 106(26), 10570–10575 (2009).  https://doi.org/10.1073/pnas.0900943106 ADSCrossRefGoogle Scholar
  55. 55.
    Hidalgo, C.A., Klinger, B., Barabasi, A.L., Hausmann, R.: The product space conditions the development of nations. Science (80-. ). 317(5837), 482–487 (2007). http://www.sciencemag.org/cgi/doi/10.1126/science.1144581 ADSCrossRefGoogle Scholar
  56. 56.
    Hong, Y.: On computing the distribution function for the poisson binomial distribution. Comput. Stat. Data Anal. 59(1), 41–51 (2013).  https://doi.org/10.1016/j.csda.2012.10.006 MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    James, A., Pitchford, J.W., Plank, M.J.: Disentangling nestedness from models of ecological complexity. Nature 487(7406), 227–230 (2012).  https://doi.org/10.1038/nature11214 ADSCrossRefGoogle Scholar
  58. 58.
    Jaynes, E.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957).  https://doi.org/10.1103/PhysRev.106.620 ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Krause, A., Giansante, S.: Interbank lending and the spread of bank failures: a network model of systemic risk. J. Econ. Behav. Org. 83(3), 583–608 (2012).  https://doi.org/10.1016/j.jebo.2012.05.015 CrossRefGoogle Scholar
  60. 60.
    Levy-Carciente, S., Kenett, D.Y., Avakian, A., Stanley, H.E., Havlin, S.: Dynamical macroprudential stress testing using network theory. J. Bank. Financ. 59, 164–181 (2015).  https://doi.org/10.1016/j.jbankfin.2015.05.008 CrossRefGoogle Scholar
  61. 61.
    Lintner, J.: The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev. Econ. Stat. 47(1), 13–37 (1965)CrossRefGoogle Scholar
  62. 62.
    Mastrandrea, R., Squartini, T., Fagiolo, G., Garlaschelli, D.: Enhanced reconstruction of weighted networks from strengths and degrees. New J. Phys. (2014).  https://doi.org/10.1088/1367-2630/16/4/043022 ADSCrossRefGoogle Scholar
  63. 63.
    McGill, B.J., Etienne, R.S., Gray, J.S., Alonso, D., Anderson, M.J., Benecha, H.K., Dornelas, M., Enquist, B.J., Green, J.L., He, F., Hurlbert, A.H., Magurran, A.E., Marquet, P.A., Maurer, B.A., Ostling, A., Soykan, C.U., Ugland, K.I., White, E.P.: Species abundance distributions: moving beyond single prediction theories to integrate within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).  https://doi.org/10.1111/j.1461-0248.2007.01094.x CrossRefGoogle Scholar
  64. 64.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Sci. Rep. 298(October), 11–14 (2002). www.sciencemag.org/cgi/content/full/298/5594/824/DC1 ADSCrossRefGoogle Scholar
  65. 65.
    Molloy, M., Reed, B.: The critical phase for random graphs with a given degree sequence. Random Struct. Algorithms. 6, 161–179 (1995).  https://doi.org/10.1017/S096354830700867X
  66. 66.
    Mossin, J.: Equilibrium in a capital asset market. Econometrica 34(4), 768–783 (1966)CrossRefGoogle Scholar
  67. 67.
    Munoz, M.A., Jonhson, S., Dominquez-Garcia, V.: Factors determining nestedness in complex networks. PLoS ONE 8(9), e74025 (2013).  https://doi.org/10.1371/journal.pone.0074025 ADSCrossRefGoogle Scholar
  68. 68.
    Newman, M.E.J.: Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016,132 (2001).  https://doi.org/10.1103/PhysRevE.64.016132
  69. 69.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(22), 026,113 (2004).  https://doi.org/10.1103/PhysRevE.69.026113 CrossRefGoogle Scholar
  70. 70.
    O’Neill, J.: Who You Calling a BRIC? Bloomberg, New York (2013). https://www.bloomberg.com/view/articles/2013-11-12/who-you-calling-a-bric-. Accessed 05 Sep, 2017
  71. 71.
    Park, J., Newman, M.E.J.: Statistical mechanics of networks. Phys. Rev. E 70(6), 66,117 (2004).  https://doi.org/10.1103/PhysRevE.70.066117 MathSciNetCrossRefGoogle Scholar
  72. 72.
    Payrató Borrás, C., Hernández, L., Moreno, Y.: Breaking the spell of nestedness. ArXiv e-prints (2017). arXiv:1711.03134
  73. 73.
    Pilosof, S., Porter, M.A., Pascual, M., Kéfi, S.: The multilayer nature of ecological networks. Nat. Ecol. Evol. 1(March), 1–9 (2017).  https://doi.org/10.1038/s41559-017-0101 CrossRefGoogle Scholar
  74. 74.
    Pugliese, E., Cimini, G., Patelli, A., Zaccaria, A., Pietronero, L., Gabrielli, A.: Unfolding the innovation system for the development of countries: co-evolution of Science, Technology and Production. ArXiv e-prints (2017). arXiv:1707.05146
  75. 75.
    Pugliese, E., Zaccaria, A., Pietronero, L.: On the convergence of the Fitness-Complexity Algorithm. ArXiv e-prints (2014). arXiv:1410.0249
  76. 76.
    Pugliese, E., Zaccaria, A., Pietronero, L.: On the convergence of the Fitness-Complexity Algorithm. Eur. Phys. J. Spec. Top. 225(10), 1893–1911 (2016).  https://doi.org/10.1140/epjst/e2015-50118-1 CrossRefGoogle Scholar
  77. 77.
    Ricardo, D.: On the Principles of Political Economy, and Taxation. John Murray, London (1817)Google Scholar
  78. 78.
    Roberts, A., Stone, L.: Island-sharing by archipelago species. Oecologia 83(4), 560–567 (1990).  https://doi.org/10.1007/BF00317210 ADSCrossRefGoogle Scholar
  79. 79.
    Saavedra, S., Reed-Tsochas, F., Uzzi, B.: Common Organizing Mechanisms in Ecological and Socio-economic Networks. ArXiv e-prints (2011) arXiv:1110.0376
  80. 80.
    Saracco, F., Di Clemente, R., Gabrielli, A., Squartini, T.: Randomizing bipartite networks: the case of the World Trade Web. Sci. Rep. 5, 10,595 (2015). http://www.nature.com/articles/srep10595
  81. 81.
    Saracco, F., Di Clemente, R., Gabrielli, A., Squartini, T.: Detecting early signs of the 2007–2008 crisis in the world trade. Sci. Rep. 6, 30,286 (2016).  https://doi.org/10.1038/srep30286
  82. 82.
    Saracco, F., Straka, M.J., Di Clemente, R., Gabrielli, A., Caldarelli, G., Squartini, T.: Inferring monopartite projections of bipartite networks: an entropy-based approach. New J. Phys. 19(5), 053,022 (2016).  https://doi.org/10.1088/1367-2630/aa6b38 CrossRefGoogle Scholar
  83. 83.
    Serrano, M.A., Boguñá, M.: Topology of the world trade web. Phys. Rev. E 68, 015,101 (2003).  https://doi.org/10.1103/PhysRevE.68.015101
  84. 84.
    Shleifer, A., Vishny, R.W.: Fire sales in finance and macroeconomics. Working Paper 16642, National Bureau of Economic Research (2010).  https://doi.org/10.3386/w16642
  85. 85.
    Shoval, O., Alon, U.: SnapShot: network motifs. Cell 143(2), 326–326.e1 (2010).  https://doi.org/10.1016/j.cell.2010.09.050 CrossRefGoogle Scholar
  86. 86.
    Smith, A.: An Inquiry into the Nature and Causes of the Wealth of Nations. W. Strahan and T. Cadell, London (1776)CrossRefGoogle Scholar
  87. 87.
    Squartini, T., Almog, A., Caldarelli, G., van Lelyveld, I., Garlaschelli, D., Cimini, G.: Enhanced capital-asset pricing model for the reconstruction of bipartite financial networks. Phys. Rev. E 96, 032,315 (2017).  https://doi.org/10.1103/PhysRevE.96.032315
  88. 88.
    Staniczenko, P.P.A., Kopp, J.C., Allesina, S.: The ghost of nestedness in ecological networks. Nat. Commun. 4, 1391–1396 (2013).  https://doi.org/10.1038/ncomms2422 ADSCrossRefGoogle Scholar
  89. 89.
    Stone, L., Roberts, A.: The checkerboard score and species distributions. Oecologia 85(1), 74–79 (1990).  https://doi.org/10.1007/BF00317345 ADSCrossRefGoogle Scholar
  90. 90.
    Straka, M.J., Caldarelli, G., Saracco, F.: Grand canonical validation of the bipartite International Trade Network. Phys. Rev. E 96(022306), 1–12 (2017).  https://doi.org/10.1103/PhysRevE.96.022306 CrossRefGoogle Scholar
  91. 91.
    Suweis, S., Simini, F., Banavar, J.R., Maritan, A.: Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500(7463), 449–52 (2013).  https://doi.org/10.1038/nature12438 ADSCrossRefGoogle Scholar
  92. 92.
    Tacchella, A., Cristelli, M., Caldarelli, G., Gabrielli, A., Pietronero, L.: A new metrics for countries’ fitness and products’ complexity. Sci. Rep. 2, 1–4 (2012).  https://doi.org/10.1038/srep00723 CrossRefzbMATHGoogle Scholar
  93. 93.
    Thebault, E.: Identifying compartments in presence-absence matrices and bipartite networks: insights into modularity measures. J. Biogeogr. (2012).  https://doi.org/10.1111/jbi.12015. http://wileyonlinelibrary.com/journal/jbi CrossRefGoogle Scholar
  94. 94.
    Thébault, E., Fontaine, C.: Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).  https://doi.org/10.1126/science.1188321 ADSCrossRefGoogle Scholar
  95. 95.
    Toonders, J.: Data is the new oil of the digital economy. WIRED (2014). https://www.wired.com/insights/2014/07/data-new-oil-digital-economy/. Accessed 10 Sep, 2017
  96. 96.
    Williams, R.J.: Simple MaxEnt models explain food web degree distributions. Theor. Ecol. (2010).  https://doi.org/10.1007/s12080-009-0052-6 CrossRefGoogle Scholar
  97. 97.
    Williams, R.J.: Biology, methodology or chance? The degree distributions of bipartite ecological networks. PLoS ONE (2011).  https://doi.org/10.1371/journal.pone.0017645 ADSCrossRefGoogle Scholar
  98. 98.
    Wong, E., Baur, B., Quader, S., Huang, C.H.: Biological network motif detection: principles and practice. Brief. Bioinform. 13(2), 202–215 (2012).  https://doi.org/10.1093/bib/bbr033 CrossRefGoogle Scholar
  99. 99.
    World Economic Forum: Building Resilience in Supply Chains. Tech. Rep. January (2013). http://www3.weforum.org/docs/WEF_RRN_MO_BuildingResilienceSupplyChains_Report_2013.pdf
  100. 100.
    World Trade Organization: Trade in goods and services has fluctuated significantly over the last 20 years. Tech. rep. (2015). https://www.wto.org/english/res_e/statis_e/its2015_e/its15_highlights_e.pdf
  101. 101.
    Zaccaria, A., Cristelli, M., Tacchella, A., Pietronero, L.: How the taxonomy of products drives the economic development of countries. PLoS ONE 9(12), 1–17 (2014).  https://doi.org/10.1371/journal.pone.0113770 CrossRefGoogle Scholar
  102. 102.
    Zhou, T., Ren, J., Medo, M., Zhang, Y.C.: Bipartite network projection and personal recommendation. Phys. Rev. E (2007).  https://doi.org/10.1103/PhysRevE.76.046115

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mika J. Straka
    • 1
  • Guido Caldarelli
    • 1
    • 2
    • 3
    • 4
  • Tiziano Squartini
    • 1
  • Fabio Saracco
    • 1
  1. 1.IMT School for Advanced StudiesLuccaItaly
  2. 2.Istituto dei Sistemi Complessi, CNR, Dip. Fisica Università “Sapienza”RomeItaly
  3. 3.London Institute of Mathematical SciencesLondonUK
  4. 4.European Centre for Living TechnologyUniversity of VeniceVeniceItaly

Personalised recommendations