Journal of Statistical Physics

, Volume 171, Issue 3, pp 484–492 | Cite as

Uniqueness of Mass-Conserving Self-similar Solutions to Smoluchowski’s Coagulation Equation with Inverse Power Law Kernels

Article
  • 51 Downloads

Abstract

Uniqueness of mass-conserving self-similar solutions to Smoluchowski’s coagulation equation is shown when the coagulation kernel K is given by \(K(x,x_*)=2(x x_*)^{-\alpha }\), \((x,x_*)\in (0,\infty )^2\), for some \(\alpha >0\).

Keywords

Coagulation Self-similar solution Mass conservation Uniqueness 

Mathematics Subject Classification

45J05 35C06 

References

  1. 1.
    Banasiak, J., Lamb, W., Laurençot, Ph.: Analytic methods for coagulation-fragmentation models (Book in preparation)Google Scholar
  2. 2.
    Bertoin, J.: Eternal solutions to Smoluchowski’s coagulation equation with additive kernel and their probabilistic interpretations. Ann. Appl. Probab. 12, 547–564 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bonacini, M., Niethammer, B., Velázquez, J.J.L.: Self-similar solutions to coagulation equations with time-dependent tails: the case of homogeneity one (2016). arXiv:1612.06610
  4. 4.
    Bonacini, M., Niethammer, B., Velázquez, J.J.L.: Self-similar solutions to coagulation equations with time-dependent tails: the case of homogeneity smaller than one. Commun. Partial Differ. Equ. 43, 82–117 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cañizo, J.A., Mischler, S.: Regularity, local behavior and partial uniqueness for self-similar profiles of Smoluchowski’s coagulation equation. Rev. Mat. Iberoam. 27, 803–839 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Clark, J.M.C., Katsouros, V.: Stably coalescent stochastic froths. Adv. Appl. Probab. 31, 199–219 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Escobedo, M., Mischler, S.: Dust and self-similarity for the Smoluchowski coagulation equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 331–362 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Escobedo, M., Mischler, S., Perthame, B.: Gelation in coagulation and fragmentation models. Commun. Math. Phys. 231, 157–188 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Escobedo, M., Mischler, S., Rodriguez Ricard, M.: On self-similarity and stationary problem for fragmentation and coagulation models. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 99–125 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fournier, N., Laurençot, Ph.: Existence of self-similar solutions to Smoluchowski’s coagulation equation. Commun. Math. Phys. 256, 589–609 (2005)Google Scholar
  11. 11.
    Fournier, N., Laurençot, Ph.: Local properties of self-similar solutions to Smoluchowski’s coagulation equation with sum kernels. Proc. R. Soc. Edinb. Sect. A 136, 485–508 (2006)Google Scholar
  12. 12.
    Fournier, N., Laurençot, Ph.: Well-posedness of Smoluchowski’s coagulation equation for a class of homogeneous kernels. J. Funct. Anal. 233, 351–379 (2006)Google Scholar
  13. 13.
    Herrmann, M., Niethammer, B., Velázquez, J.J.L.: Instabilities and oscillations in coagulation equations with kernels of homogeneity one. Q. Appl. Math. 75, 105–130 (2017)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jeon, I.: Existence of gelling solutions for coagulation-fragmentation equations. Commun. Math. Phys. 194, 541–567 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kreer, M., Penrose, O.: Proof of dynamical scaling in Smoluchowski’s coagulation equation with constant kernel. J. Stat. Phys. 75, 389–407 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Leyvraz, F.: Existence and properties of post-gel solutions for the kinetic equations of coagulation. J. Phys. A 16, 2861–2873 (1983)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Leyvraz, F.: Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys. Rep. 383, 95–212 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Leyvraz, F., Tschudi, H.R.: Singularities in the kinetics of coagulation processes. J. Phys. A 14, 3389–3405 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    McLeod, J.B., Niethammer, B., Velázquez, J.J.L.: Asymptotics of self-similar solutions to coagulation equations with product kernel. J. Stat. Phys. 144, 76–100 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Menon, G., Pego, R.L.: Approach to self-similarity in Smoluchowski’s coagulation equations. Commun. Pure Appl. Math. 57, 1197–1232 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Niethammer, B., Velázquez, J.J.L.: Optimal bounds for self-similar solutions to coagulation equations with product kernel. Commun. Partial Differ. Equ. 36, 2049–2061 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Niethammer, B., Velázquez, J.J.L.: Exponential tail behavior of self-similar solutions to Smoluchowski’s coagulation equation. Commun. Partial Differ. Equ. 39, 2314–2350 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Niethammer, B., Velázquez, J.J.L.: Uniqueness of self-similar solutions to Smoluchowski’s coagulation equations for kernels that are close to constant. J. Stat. Phys. 157, 158–181 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Niethammer, B., Throm, S., Velázquez, J.J.L.: A uniqueness result for self-similar profiles to Smoluchowski’s coagulation equation revisited. J. Stat. Phys. 164, 399–409 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Smoluchowski, M.: Drei Vortrage über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Zeitschrift für Physik 17, 557–585 (1916)ADSGoogle Scholar
  26. 26.
    Smoluchowski, M.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift für physikalische Chemie 92, 129–168 (1917)Google Scholar
  27. 27.
    van Dongen, P.G.J., Ernst, M.H.: Scaling solutions of Smoluchowski’s coagulation equation. J. Stat. Phys. 50, 295–329 (1988)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Ziff, R.M.: Kinetics of polymerization. J. Stat. Phys. 23, 241–263 (1980)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRSToulouse Cedex 9France

Personalised recommendations