Journal of Statistical Physics

, Volume 171, Issue 3, pp 470–483 | Cite as

Clustering in the Three and Four Color Cyclic Particle Systems in One Dimension

Article
  • 22 Downloads

Abstract

We study the \(\kappa \)-color cyclic particle system on the one-dimensional integer lattice \(\mathbb {Z}\), first introduced by Bramson and Griffeath (Ann Prob:26–45, 1989). In that paper they show that almost surely, every site changes its color infinitely often if \(\kappa \in \{3,4\}\) and only finitely many times if \(\kappa \ge 5\). In addition, they conjecture that for \(\kappa \in \{3,4\}\) the system clusters, that is, for any pair of sites xy, with probability tending to 1 as \(t\rightarrow \infty \), x and y have the same color at time t. Here we prove that conjecture.

Keywords

Interacting particle system Cyclic particle system Rock paper scissors model Multitype voter model Annihilating particle system Clustering 

References

  1. 1.
    Belitsky, V., Ferrari, P.A.: Ballistic annihilation and deterministic surface growth. J. Stat. Phys. 80(3–4), 517–543 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ben-Naim, E., Redner, S., Leyvraz, F.: Decay kinetics of ballistic annihilation. Phys. Rev. Lett. 70(12), 1890 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Bramson, M., Griffeath, D.: Flux and fixation in cyclic particle systems. Ann. Prob., 26–45 (1989)Google Scholar
  4. 4.
    Durrett, R., Steif, J.E.: Some rigorous results for the Greenberg-Hastings model. J. Theor. Probab. 4(4), 669–690 (1991)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dygert, B., Junge, M., Kinzel, C., Raymond, A., Slivken, E., Zhu, J.: The bullet problem with discrete speeds (2016). arXiv:1610.00282
  6. 6.
    Elskens, Y., Frisch, H.L.: Annihilation kinetics in the one-dimensional ideal gas. Phys. Rev. A 31(6), 3812 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    Fisch, R.: Cyclic cellular automata and related processes. Physica D 45(1), 19–25 (1990)ADSCrossRefMATHGoogle Scholar
  8. 8.
    Fisch, R.: The one-dimensional cyclic cellular automaton: a system with deterministic dynamics that emulates an interacting particle system with stochastic dynamics. J. Theor. Probab. 3(2), 311–338 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fisch, R.: Clustering in the one-dimensional three-color cyclic cellular automaton. Ann. Probab., 1528–1548 (1992)Google Scholar
  10. 10.
    Fisch, R., Gravner, J.: One-dimensional deterministic greenberg-hastings models. Complex Syst. 9(5), 329–348 (1995)MathSciNetMATHGoogle Scholar
  11. 11.
    Krug, J., Spohn, H.: Universality classes for deterministic surface growth. Phys. Rev. A 38(8), 4271 (1988)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Lanchier, N., Scarlatos, S.: Limiting behavior for a general class of voter models with confidence threshold (2014). arXiv:1412.4142
  13. 13.
    Liggett, T.M., et al.: Stochastic models of interacting systems. Ann. Probab. 25(1), 1–29 (1997)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lyu, H.: Synchronization of finite-state pulse-coupled oscillators. Physica D 303, 28–38 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lyu, H., Sivakoff, D.: Persistence of sums of correlated increments and clustering in cellular automata (Submitted, 2017). arXiv.org/1706.08117
  16. 16.
    Lyu, H., Sivakoff, D.: Synchronization of finite-state pulse-coupled oscillators on \(\mathbb{Z}\) (Submitted, 2017). arxiv:1701.00319
  17. 17.
    Sidoravicius, V., Tournier, L., et al.: Note on a one-dimensional system of annihilating particles. Electron. Commun. Probab. 22 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AlbertaEdmontonCanada
  2. 2.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations