Dynamical Response of Passive and Active Particles to Time-Periodic Mechanical Forcing

  • Michael Wang
  • Alexander Y. GrosbergEmail author


The presence of active forces in various biological and artificial systems may change how those systems behave when forced. We present a minimal model of a suspension of passive or active swimmers driven on the boundaries by time-dependent forcing. In particular, we consider a time-periodic drive from which we determine the linear response functions of the suspension. The meaning of these response functions are interpreted in terms of the storage and dissipation of energy through the particles within the system. We find that while a slowly driven active system responds in a way similar to a passive system with a re-defined diffusion constant, a rapidly driven active system exhibits a novel behavior related to a change in the motoring activity of the particles due to the external drive.


Active matter Linear response theory Non-equilibrium statistical physics Time-periodic forcing 



This work was supported primarily by the MRSEC Program of the National Science Foundation under Award Number DMR-1420073. We thank J.-F. Joanny and W. Srinin for stimulating discussions and their insightful comments. We were fortunate to have worked in the same department with Pierre Hohenberg and one of us (AYG) had the opportunity to discuss with him this work at its early stages. We therefore feel honored to submit this paper to the journal dedicated to his memory.


  1. 1.
    Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M., Simha, R.A.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G., Volpe, G.: Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Berg, H.C., Brown, D.A.: Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500 (1972)ADSCrossRefGoogle Scholar
  4. 4.
    Palacci, J., Sacanna, S., Kim, S.H., Yi, G.R., Pine, D.J., Chaikin, P.M.: Light-activated self-propelled colloids. Philos. Trans. R. Soc. A 372, 20130372 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Paxton, W.F., Kistler, K.C., Olmeda, C.C., Sen, A., Angelo, S.K.St, Cao, T., Mallouk, T.E., Lammert, P.E., Crespi, V.H.: Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424 (2004)CrossRefGoogle Scholar
  6. 6.
    Astumian, R.D.: Thermodynamics and kinetic of a Brownian motor. Science 276, 917 (1997)CrossRefGoogle Scholar
  7. 7.
    Jülicher, F., Ajdari, A., Prost, J.: Modeling molecular motors. Rev. Mod. Phys. 69, 1269 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Cates, M.E., Tailleur, J.: Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Redner, G.S., Hagan, M.F., Baskaran, A.: Structure and dynamics of a phase-separating active colloidal fluid. Phys. Rev. Lett. 110, 055701 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Fily, Y., Marchetti, M.C.: Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 108, 235702 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Wysocki, A., Winkler, R.G., Gompper, G.: Cooperative motion of active Brownian spheres in three-dimensional dense suspensions. EPL 105, 48004 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Bialké, J., Löwen, H., Speck, T.: Microscopic theory for the phase separation of self-propelled repulsive disks. EPL 103, 30008 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Galajda, P., Keymer, J., Chaikin, P.M., Austin, R.: A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189, 8704 (2007)CrossRefGoogle Scholar
  14. 14.
    Di Leonardo, R., Angelani, L., Dell’Arciprete, D., Ruocco, G., Lebba, V., Schippa, S., Conte, M.P., Mecarini, F., De Angelis, F., Di Fabrizio, E.: Bacterial ratchet motors. Proc. Natl. Acad. Sci. USA 107, 9541 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Vizsnyiczai, G., Frangipane, G., Maggi, C., Saglimbeni, F., Bianchi, S., Di Leonardo, R.: Light controlled 3D micromotors powered by bacteria. Nat. Commun. 8, 15874 (2017)CrossRefGoogle Scholar
  16. 16.
    Sokolov, A., Aranson, I.S.: Reduction of viscosity in suspension of swimming bacteria. Phys. Rev. Lett. 103, 148101 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Rafaï, S., Jibuti, L., Peyla, P.: Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102 (2010)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Hatwalne, Y., Ramaswamy, S., Rao, M., Simha, R.A.: Rheology of active-particles suspensions. Phys. Rev. Lett. 92, 118101 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Turlier, H., Fedosov, D.A., Audoly, B., Auth, T., Gov, N.S., Sykes, C., Joanny, J.F., Gompper, G., Betz, T.: Equilibrium physics breakdown reveals the active nature of red blood cell flickering. Nat. Phys. 12, 513 (2016)CrossRefGoogle Scholar
  20. 20.
    Chu, F.Y., Haley, S.C., Zidovska, A.: On the origin of shape fluctuations of the cell nucleus. Proc. Natl. Acad. Sci. USA 114, 10338 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Fodor, É., Guo, M., Gov, N.S., Visco, P., Weitz, D.A., van Wijland, F.: Activity-driven fluctuations in living cells. EPL 110, 48005 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Bi, D., Yang, X., Marchetti, M.C., Manning, M.L.: Motility-driven glass and jamming transitions in biological tissues. Phys. Rev. X 6, 021011 (2016)Google Scholar
  23. 23.
    Caprini, L., Marconi, U.M.B., Vulpiani, A.: Linear response and correlation of a self-propelled particle in the presence of external fields. J. Stat. Mech. 2018, 033203 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Solon, A.P., Fily, Y., Baskaran, A., Cates, M.E., Kafri, Y., Kardar, M., Tailleur, J.: Pressure is not a state function for generic active fluids. Nat. Phys. 11, 673 (2015)CrossRefGoogle Scholar
  25. 25.
    Marconi, U.M.B., Sarracino, A., Maggi, C., Puglisi, A.: Self-propulsion against a moving membrane: enhanced accumulation and drag force. Phys. Rev. E 96, 032601 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Sheshka, R., Recho, P., Truskinovsky, L.: Rigidity generation by nonthermal fluctuations. Phys. Rev. E 93, 052604 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Schnitzer, M.J.: Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553 (1993)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Fourier, Joseph: Théory Analytique de la Chaleur. Chez Firmin Didot, Paris (1822)zbMATHGoogle Scholar
  29. 29.
    Fourier, Joseph: Analytical Theory of Heat. Cambridge University Press, Cambridge (1878)zbMATHGoogle Scholar
  30. 30.
    Golestanian, R., Kardar, M.: Path-integral approach to the dynamical Casimir effect with fluctuating boundaries. Phys. Rev. A 58, 1713 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    Cohen, J.A., Chaudhuri, A., Golestanian, R.: Active polymer translocation through flickering pores. Phys. Rev. Lett. 107, 238102 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Pizzolato, N., Fiasconaro, A., Adorno, D.P., Spagnolo, B.: Translocation dynamics of a short polymer driven by an oscillating force. J. Chem. Phys. 138, 054902 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and Center for Soft Matter ResearchNew York UniversityNew YorkUSA

Personalised recommendations