# Statistical Analysis of the First Passage Path Ensemble of Jump Processes

- 281 Downloads

## Abstract

The transition mechanism of jump processes between two different subsets in state space reveals important dynamical information of the processes and therefore has attracted considerable attention in the past years. In this paper, we study the first passage path ensemble of both discrete-time and continuous-time jump processes on a finite state space. The main approach is to divide each first passage path into nonreactive and reactive segments and to study them separately. The analysis can be applied to jump processes which are non-ergodic, as well as continuous-time jump processes where the waiting time distributions are non-exponential. In the particular case that the jump processes are both Markovian and ergodic, our analysis elucidates the relations between the study of the *first passage paths* and the study of the *transition paths* in transition path theory. We provide algorithms to numerically compute statistics of the first passage path ensemble. The computational complexity of these algorithms scales with the complexity of solving a linear system, for which efficient methods are available. Several examples demonstrate the wide applicability of the derived results across research areas.

## Keywords

Jump process Non-ergodic process Non-exponential distribution First passage path Transition path theory## Notes

### Acknowledgements

This research has been funded by Deutsche Forschungsgemeinschaft (DFG) through Grant CRC 1114, by the Einstein Foundation Berlin through Project CH4 of Einstein Center for Mathematics (ECMath) and though the BMBF, Grant Number 031A307.

## References

- 1.Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2016)
- 2.Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. U.S.A.
**106**, 21484–21489 (2009)ADSCrossRefGoogle Scholar - 3.Cameron, M., Vanden-Eijnden, E.: Flows in complex networks: theory, algorithms, and application to Lennard-Jones cluster rearrangement. J. Stat. Phys.
**156**, 427–454 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 4.Condamin, S., Bénichou, O., Tejedor, V., Voituriez, R., Klafter, J.: First-passage times in complex scale-invariant media. Nature
**450**, 77–80 (2007)ADSCrossRefGoogle Scholar - 5.Durrett, R.: Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2010)Google Scholar
- 6.Goh, K.-I., Barabási, A.-L.: Burstiness and memory in complex systems. EPL (Europhys. Lett.)
**81**, 48002 (2008)ADSMathSciNetCrossRefGoogle Scholar - 7.Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) Proceedings of the 7th Python in Science Conference, Pasadena, CA USA, pp. 11–15 (2008)Google Scholar
- 8.Harland, B., Sun, S.X.: Path ensembles and path sampling in nonequilibrium stochastic systems. J. Chem. Phys.
**127**, 104103 (2007)ADSCrossRefGoogle Scholar - 9.Hoffmann, T., Porter, M.A., Lambiotte, R.: Generalized master equations for non-Poisson dynamics on networks. Phys. Rev. E
**86**, 046102 (2012)ADSCrossRefGoogle Scholar - 10.Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E
**65**, 026107 (2002)ADSCrossRefGoogle Scholar - 11.Huisinga, W., Meyn, S., Schütte, Ch.: Phase transitions and metastability in markovian and molecular systems. Ann. Appl. Probab.
**14**, 419–458 (2004)MathSciNetCrossRefzbMATHGoogle Scholar - 12.Hwang, S., Lee, D.-S., Kahng, B.: First passage time for random walks in heterogeneous networks. Phys. Rev. Lett.
**109**, 088701 (2012)ADSCrossRefGoogle Scholar - 13.Kreuzer, S.M., Moon, T.J., Elber, R.: Catch bond-like kinetics of helix cracking: network analysis by molecular dynamics and milestoning. J. Chem. Phys.
**139**, 121902 (2013)ADSCrossRefGoogle Scholar - 14.Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times, Providence, R.I. American Mathematical Society, 2009. With a chapter on “coupling from the past” by J.G. Propp and D.B. WilsonGoogle Scholar
- 15.Lu, J., Nolen, J.: Reactive trajectories and the transition path process. Probab. Theory Relat. Fields
**161**, 195–244 (2014)MathSciNetCrossRefzbMATHGoogle Scholar - 16.Manhart, M., Kion-Crosby, W., Morozov, A.V.: Path statistics, memory, and coarse-graining of continuous-time random walks on networks. J. Chem. Phys.
**143**, 214106 (2015)ADSCrossRefGoogle Scholar - 17.Metzler, R., Oshanin, G., Redner, S.: First-Passage Phenomena and Their Applications. World Scientific Publishing Company, World Scientific Studies in International Economics (2014)Google Scholar
- 18.Metzner, P., Dittmer, E., Jahnke, T., Schütte, Ch.: Generator estimation of Markov jump processes. J. Comput. Phys.
**227**, 353–375 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 19.Metzner, P., Schütte, Ch., Vanden-Eijnden, E.: Transition path theory for Markov jump processes. Multiscale Model. Simul.
**7**, 1192–1219 (2009)MathSciNetCrossRefzbMATHGoogle Scholar - 20.Norris, J.R.: Markov chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (1998)Google Scholar
- 21.Park, S., Sener, M.K., Lu, D., Schulten, K.: Reaction paths based on mean first-passage times. J. Chem. Phys.
**119**, 1313–1319 (2003)ADSCrossRefGoogle Scholar - 22.Poletto, C., Tizzoni, M., Colizza, V.: Human mobility and time spent at destination: impact on spatial epidemic spreading. J. Theor. Biol.
**338**, 41–58 (2013)MathSciNetCrossRefGoogle Scholar - 23.Prinz, J.H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera, J.D., Schütte, Ch., Noé, F.: Markov models of molecular kinetics: generation and validation. J. Chem. Phys.
**134**, 174105 (2011)ADSCrossRefGoogle Scholar - 24.Rosvall, M., Esquivel, A.V., Lancichinetti, A., West, J.D., Lambiotte, R.: Memory in network flows and its effects on spreading dynamics and community detection. Nat. Commun.
**5**, 4630 (2014)ADSCrossRefGoogle Scholar - 25.Scholtes, I., Wider, N., Pfitzner, R., Garas, A., Tessone, C.J., Schweitzer, F.: Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks. Nat. Commun.
**5**, 5024 (2014)ADSCrossRefGoogle Scholar - 26.Schütte, Ch., Sarich, M.: Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis. Courant Lecture Notes, Courant Institute of Mathematical Sciences, Algorithmic Approaches (2013)Google Scholar
- 27.Singer, P., Helic, D., Taraghi, B., Strohmaier, M.: Detecting memory and structure in human navigation patterns using Markov chain models of varying order. PLOS ONE
**9**, 1–21 (2014)Google Scholar - 28.Speidel, L., Lambiotte, R., Aihara, K., Masuda, N.: Steady state and mean recurrence time for random walks on stochastic temporal networks. Phys. Rev. E
**91**, 012806 (2015)ADSMathSciNetCrossRefGoogle Scholar - 29.Sun, S.X.: Path summation formulation of the master equation. Phys. Rev. Lett.
**96**, 210602 (2006)ADSCrossRefGoogle Scholar - 30.Vanden-Eijnden, E.: Transition path theory. In: Bowman, G.R., Pande, V.S., Noé, F. (eds.) An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation, pp. 91–100. Springer, Netherlands (2014)Google Scholar
- 31.Vanden-Eijnden, E.: Transition path theory. In: Ferrario, M., Ciccotti, G., Binder, K. (eds.) Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology, vol. 1, pp. 453–493. Springer, Berlin (2006)Google Scholar
- 32.Viswanath, S., Kreuzer, S.M., Cardenas, A.E., Elber, R.: Analyzing milestoning networks for molecular kinetics: definitions, algorithms, and examples. J. Chem. Phys.
**139**, 174105 (2013)ADSCrossRefGoogle Scholar - 33.von Kleist, M., Metzner, P., Marquet, R., Schütte, Ch.: HIV-1 polymerase inhibition by nucleoside analogs: cellular-and kinetic parameters of efficacy, susceptibility and resistance selection. PLoS Comput. Biol.
**8**, e1002359 (2012)MathSciNetCrossRefGoogle Scholar - 34.Weinan, E., Vanden-Eijnden, E.: Towards a theory of transition paths. J. Stat. Phys.
**123**, 503–523 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 35.Weinan, E., Vanden-Eijnden, E.: Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem.
**61**, 391–420 (2010)CrossRefGoogle Scholar - 36.Weiss, G.H.: First Passage Time Problems in Chemical Physics, pp. 1–18. Wiley (2007)Google Scholar
- 37.Yousef, K.P., Streck, A., Schütte, Ch., Siebert, H., Hengge, R., von Kleist, M.: Logical-continuous modelling of post-translationally regulated bistability of curli fiber expression in
*Escherichia coli*. BMC Syst. Biol.**9**, 39 (2015)CrossRefGoogle Scholar - 38.Youtube videos of 2014 FIFA World Cup Final. https://www.youtube.com/watch?v=rTARH0RWDy8 and https://www.youtube.com/watch?v=U1O4wvznKr0 (2014)
- 39.2014 FIFA World Cup Final. http://www.fifa.com/worldcup/matches/round=255959/match=300186501/ (2014)