Skip to main content
Log in

Evolution of a Modified Binomial Random Graph by Agglomeration

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the classical Erdős–Rényi random graph G(np) there are n vertices and each of the possible edges is independently present with probability p. The random graph G(np) is homogeneous in the sense that all vertices have the same characteristics. On the other hand, numerous real-world networks are inhomogeneous in this respect. Such an inhomogeneity of vertices may influence the connection probability between pairs of vertices. The purpose of this paper is to propose a new inhomogeneous random graph model which is obtained in a constructive way from the Erdős-Rényi random graph G(np). Given a configuration of n vertices arranged in N subsets of vertices (we call each subset a super-vertex), we define a random graph with N super-vertices by letting two super-vertices be connected if and only if there is at least one edge between them in G(np). Our main result concerns the threshold for connectedness. We also analyze the phase transition for the emergence of the giant component and the degree distribution. Even though our model begins with G(np), it assumes the existence of some community structure encoded in the configuration. Furthermore, under certain conditions it exhibits a power law degree distribution. Both properties are important for real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aldous, A., Limic, V.: The entrance boundary of the multiplicative coalescent. Electron. J. Probab. 3, 1–59 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  3. Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  4. Bollobás, B., Thomason, A.: Random graphs of small order. Ann. Discret. Math. 118, 47–97 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Bollobás, B., Janson, S., Riordan, O.: The phase transition in a uniformly grown random graph has infinite order. Random Struct. Alg. 26, 1–36 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous random graphs. Random Struct. Alg. 31, 3–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed degree distribution. J. Stat. Phys. 124(6), 1377–1397 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Caldarelli, G., Capocci, A., De Los Rios, P., Muñoz, M.A.: Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89, 258702 (2002)

    Article  ADS  Google Scholar 

  9. Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Ann. Comb. 6(2), 125–145 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chung, F., Lu, L.: The average distance in a random graph with given expected degrees. Internet Math. 1(1), 91–113 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung, F., Lu, L.: Complex Graphs and Networks. CBMS Regional Conference Series in Mathematics, vol. 107. Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006)

  12. Chung, F., Lu, L.: The volume of the giant component of a rand om graph with given expected degrees. SIAM J. Discret. Math. 20, 395–411 (2006)

    Article  MATH  Google Scholar 

  13. Devroye, L., Fraiman, N.: Connectivity of inhomogeneous random graphs. Random Struct. Alg. 45, 408–420 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Durrett, R.: Rigorous result for the CHKNS random graph model. In: Banderier, C., Krattenthaler, C. (eds.) Discrete Random Walks, DRW’03. Discrete Mathematics and Theoretical Computer Science Proceedings AC, pp. 95–104 (2003)

  15. Durrett, R.: Probability: Theory and Examples, 3rd edn. Duxbury Advanced Series. Duxbury Press, Pacific Grove (2005)

  16. Erdős, P., Rényi, A.: On random graphs I. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  17. Erdős, P., Rényi, A.: On the Evolution of Random Graphs, vol. 5, pp. 17–61. Institute of Mathematics Hungarian Academy of Sciences, Hungary (1960)

    MATH  Google Scholar 

  18. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, New York (1953)

    Google Scholar 

  19. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959)

    Article  MATH  Google Scholar 

  20. Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  21. Janson, S.: Asymptotic equivalence and contiguity of some random graphs. Random Struct. Alg. 36(1), 26–45 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Janson, S., Spencer, J.: Phase transition for modified Erdös–Rènyi processes. Ark. Mat. 50, 305–329 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  24. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005)

    Article  ADS  Google Scholar 

  25. Norros, I., Reittu, H.: On a conditionally Poissonian graph process. Adv. Appl. Probab. 38(1), 59–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Seshadhri, C., Kolda, T.G., Pinar, A.: Community structure and scale-free collections of Erdős–Rényi graphs. Phys. Rev. E 85, 056109 (2012)

    Article  ADS  Google Scholar 

  27. Söderberg, B.: General formalism for inhomogeneous random graphs. Phys. Rev. E 66, 066121 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  28. van den Esker, H., van der Hofstad, R., Hooghiemstra, G.: Universality for the distance in finite variance random graphs. J. Stat. Phys. 124(6), 169–202 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. van der Hofstad, R.: Critical behavior in inhomogeneous random graphs. Random Struct. Alg. 42, 480–508 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. van der Hofstad, R.: Random Graphs and Complex Networks, vol. 1. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  31. van der Hofstad, R.: Random Graphs and Complex Networks, vol. 2. http://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf (2018+)

Download references

Acknowledgements

We thank Serguei Popov for suggesting us the construction of the inhomogeneous random graph model studied in the paper. We also thank Luiz Renato Fontes for fruitful discussions during the early stages of this work. The first two authors were financially supported by DFG KA 2748/3-1 and the Austrian Science Fund (FWF): P26826, and the last one by FAPESP 2013/03898-8, 2015/03868-7 and CNPq 479313/2012-1. The second and the third author also thank, respectively, ICMC - Universidade de São Paulo and Universitá di Torino, for their hospitality. The authors are grateful to the anonymous reviewers for their interesting comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo M. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Pachon, A. & Rodríguez, P.M. Evolution of a Modified Binomial Random Graph by Agglomeration. J Stat Phys 170, 509–535 (2018). https://doi.org/10.1007/s10955-017-1940-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1940-6

Keywords

Mathematics Subject Classification

Navigation