Advertisement

Journal of Statistical Physics

, Volume 170, Issue 3, pp 509–535 | Cite as

Evolution of a Modified Binomial Random Graph by Agglomeration

  • Mihyun Kang
  • Angelica Pachon
  • Pablo M. Rodríguez
Article
  • 91 Downloads

Abstract

In the classical Erdős–Rényi random graph G(np) there are n vertices and each of the possible edges is independently present with probability p. The random graph G(np) is homogeneous in the sense that all vertices have the same characteristics. On the other hand, numerous real-world networks are inhomogeneous in this respect. Such an inhomogeneity of vertices may influence the connection probability between pairs of vertices. The purpose of this paper is to propose a new inhomogeneous random graph model which is obtained in a constructive way from the Erdős-Rényi random graph G(np). Given a configuration of n vertices arranged in N subsets of vertices (we call each subset a super-vertex), we define a random graph with N super-vertices by letting two super-vertices be connected if and only if there is at least one edge between them in G(np). Our main result concerns the threshold for connectedness. We also analyze the phase transition for the emergence of the giant component and the degree distribution. Even though our model begins with G(np), it assumes the existence of some community structure encoded in the configuration. Furthermore, under certain conditions it exhibits a power law degree distribution. Both properties are important for real-world applications.

Keywords

Erdős–Rényi model Random graph Inhomogeneous random graph Connectedness Phase transition 

Mathematics Subject Classification

05C80 60C05 

Notes

Acknowledgements

We thank Serguei Popov for suggesting us the construction of the inhomogeneous random graph model studied in the paper. We also thank Luiz Renato Fontes for fruitful discussions during the early stages of this work. The first two authors were financially supported by DFG KA 2748/3-1 and the Austrian Science Fund (FWF): P26826, and the last one by FAPESP 2013/03898-8, 2015/03868-7 and CNPq 479313/2012-1. The second and the third author also thank, respectively, ICMC - Universidade de São Paulo and Universitá di Torino, for their hospitality. The authors are grateful to the anonymous reviewers for their interesting comments and suggestions.

References

  1. 1.
    Aldous, A., Limic, V.: The entrance boundary of the multiplicative coalescent. Electron. J. Probab. 3, 1–59 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, Cambridge (2006)CrossRefMATHGoogle Scholar
  4. 4.
    Bollobás, B., Thomason, A.: Random graphs of small order. Ann. Discret. Math. 118, 47–97 (1985)MathSciNetMATHGoogle Scholar
  5. 5.
    Bollobás, B., Janson, S., Riordan, O.: The phase transition in a uniformly grown random graph has infinite order. Random Struct. Alg. 26, 1–36 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous random graphs. Random Struct. Alg. 31, 3–122 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed degree distribution. J. Stat. Phys. 124(6), 1377–1397 (2006)MathSciNetCrossRefMATHADSGoogle Scholar
  8. 8.
    Caldarelli, G., Capocci, A., De Los Rios, P., Muñoz, M.A.: Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89, 258702 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Chung, F., Lu, L.: Connected components in random graphs with given expected degree sequences. Ann. Comb. 6(2), 125–145 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chung, F., Lu, L.: The average distance in a random graph with given expected degrees. Internet Math. 1(1), 91–113 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chung, F., Lu, L.: Complex Graphs and Networks. CBMS Regional Conference Series in Mathematics, vol. 107. Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006)Google Scholar
  12. 12.
    Chung, F., Lu, L.: The volume of the giant component of a rand om graph with given expected degrees. SIAM J. Discret. Math. 20, 395–411 (2006)CrossRefMATHGoogle Scholar
  13. 13.
    Devroye, L., Fraiman, N.: Connectivity of inhomogeneous random graphs. Random Struct. Alg. 45, 408–420 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Durrett, R.: Rigorous result for the CHKNS random graph model. In: Banderier, C., Krattenthaler, C. (eds.) Discrete Random Walks, DRW’03. Discrete Mathematics and Theoretical Computer Science Proceedings AC, pp. 95–104 (2003)Google Scholar
  15. 15.
    Durrett, R.: Probability: Theory and Examples, 3rd edn. Duxbury Advanced Series. Duxbury Press, Pacific Grove (2005)Google Scholar
  16. 16.
    Erdős, P., Rényi, A.: On random graphs I. Math. Debrecen 6, 290–297 (1959)MathSciNetMATHGoogle Scholar
  17. 17.
    Erdős, P., Rényi, A.: On the Evolution of Random Graphs, vol. 5, pp. 17–61. Institute of Mathematics Hungarian Academy of Sciences, Hungary (1960)MATHGoogle Scholar
  18. 18.
    Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, New York (1953)Google Scholar
  19. 19.
    Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959)CrossRefMATHGoogle Scholar
  20. 20.
    Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
  21. 21.
    Janson, S.: Asymptotic equivalence and contiguity of some random graphs. Random Struct. Alg. 36(1), 26–45 (2010)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Janson, S., Spencer, J.: Phase transition for modified Erdös–Rènyi processes. Ark. Mat. 50, 305–329 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, New York (2000)CrossRefMATHGoogle Scholar
  24. 24.
    Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005)CrossRefADSGoogle Scholar
  25. 25.
    Norros, I., Reittu, H.: On a conditionally Poissonian graph process. Adv. Appl. Probab. 38(1), 59–75 (2008)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Seshadhri, C., Kolda, T.G., Pinar, A.: Community structure and scale-free collections of Erdős–Rényi graphs. Phys. Rev. E 85, 056109 (2012)CrossRefADSGoogle Scholar
  27. 27.
    Söderberg, B.: General formalism for inhomogeneous random graphs. Phys. Rev. E 66, 066121 (2002)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    van den Esker, H., van der Hofstad, R., Hooghiemstra, G.: Universality for the distance in finite variance random graphs. J. Stat. Phys. 124(6), 169–202 (2008)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    van der Hofstad, R.: Critical behavior in inhomogeneous random graphs. Random Struct. Alg. 42, 480–508 (2012)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    van der Hofstad, R.: Random Graphs and Complex Networks, vol. 1. Cambridge University Press, Cambridge (2017)CrossRefMATHGoogle Scholar
  31. 31.
    van der Hofstad, R.: Random Graphs and Complex Networks, vol. 2. http://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf (2018+)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Mihyun Kang
    • 1
  • Angelica Pachon
    • 2
  • Pablo M. Rodríguez
    • 3
  1. 1.Institute of Discrete MathematicsGraz University of TechnologyGrazAustria
  2. 2.Dipartimento di MatematicaUniversità di TorinoTurinItaly
  3. 3.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil

Personalised recommendations