Journal of Statistical Physics

, Volume 170, Issue 3, pp 466–491 | Cite as

Density Large Deviations for Multidimensional Stochastic Hyperbolic Conservation Laws

  • J. Barré
  • C. BernardinEmail author
  • R. Chetrite


We investigate the density large deviation function for a multidimensional conservation law in the vanishing viscosity limit, when the probability concentrates on weak solutions of a hyperbolic conservation law. When the mobility and diffusivity matrices are proportional, i.e. an Einstein-like relation is satisfied, the problem has been solved in Bellettini and Mariani (Bull Greek Math Soc 57:31–45, 2010). When this proportionality does not hold, we compute explicitly the large deviation function for a step-like density profile, and we show that the associated optimal current has a non trivial structure. We also derive a lower bound for the large deviation function, valid for a more general weak solution, and leave the general large deviation function upper bound as a conjecture.


Large deviations principle Stochastic conservation laws Kawasaki dynamics Active particles 



We acknowledge very useful discussions with C. Bahadoran, T. Bodineau, M. Mariani and C. Nardini. This work has been supported by the Brazilian-French Network in Mathematics and the project EDNHS ANR-14-CE25-0011 of the French National Research Agency (ANR) and the project LSD ANR-15-CE40-0020-01 LSD of the French National Research Agency (ANR). This research was supported in part by the International Centre for Theoretical Sciences (ICTS) during a visit for participating in the program Non-equilibrium statistical physics (Code: ICTS/Prog-NESP/2015/10).


  1. 1.
    Bahadoran, C.: A quasi-potential for conservation laws with boundary conditions. Eprint arXiv:1010.3624 (2010)
  2. 2.
    Barré, J., Bernardin, C., Chétrite, R., Nardini, C., Peruani, F.: In preparationGoogle Scholar
  3. 3.
    Bellettini, G., Mariani, M.: Variational convergence of multidimensional conservation laws. Bull. Greek Math. Soc. 57, 31–45 (2010)MathSciNetGoogle Scholar
  4. 4.
    Bellettini, G., Bertini, L., Mariani, M., Novaga, M.: \(\Gamma \)-entropy cost for scalar conservation laws. Arch. Ration. Mech. Anal. 195(1), 261–309 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bertin, E., Droz, M., Grégoire, G.: Boltzmann and hydrodynamic description for self-propelled particles. Phys. Rev. E 74, 022101 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Bertin, E., Chaté, H., Ginelli, F., Mishra, S., Peshkov, A., Ramaswamy, S.: Mesoscopic theory for fluctuating active nematics. New J. Phys. 15, 085032 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Bertini, L., Faggionato, A., Gabrielli, D.: Large deviations principles for non gradient weakly asymmetric stochastic lattice gases. Ann. Appl. Probab. 23(1), 1–65 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bodineau, T., Derrida, B.: Distribution of current in nonequilibrium diffusive systems and phase transitions. Phys. Rev. E 72(6), 066110 (2005)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Bodineau, T., Derrida, B.: Current large deviations for asymmetric exclusion processes with open boundaries. J. Stat. Phys. 123(2), 277–300 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brenier, Y.: Résolution d’équations d’évolution quasilinéaires en dimension \(N\) d’espace à l’aide d’équations linéaires en dimension \(N+1\). J. Differ. Equ. 50(3), 375–390 (1983). (French)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325, 4th edn. Springer, Berlin (2016)zbMATHGoogle Scholar
  13. 13.
    Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications, 8. Birkhuser Boston, Inc., Boston (1993)Google Scholar
  14. 14.
    De Carlo, L., Gabrielli, D.: Totally asymmetric limit for models of heat conduction. J. Stat. Phys. 168(3), 508–534 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    De Dominicis, C., Peliti, L.: Field-theory renormalization and critical dynamics above Tc: helium, antiferromagnets, and liquid-gas systems. Phys. Rev. B 18, 353 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    De Lellis, C., Otto, F., Westdickenberg, M.: Structure of entropy solutions for multi-dimensional scalar conservation laws. Arch. Ration. Mech. Anal. 170(2), 137–184 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Debussche, A., Vovelle, J.: Scalar conservation laws with stochastic forcing. J. Funct. Anal. 259, 1014–1042 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18(Suppl. 01), 1193–1215 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    DeGroot, S.R., Mazur, P.: Non Equilibrium Thermodynamics. Dover, New York (1984)Google Scholar
  20. 20.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability, 38. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  21. 21.
    den Hollander, F.: Large Deviations. Fields Institute Monographs, vol. 14. American Mathematical Society, Providence, RI (2008)zbMATHGoogle Scholar
  22. 22.
    Faris, W.G., Jona-Lasinio, G.: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A 15, 3025–3055 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Feng, J., Nualart, D.: Stochastic scalar conservation laws. J. Funct. Anal. 255, 313–373 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Grundlehren der Mathematischen Wissenschaften, vol. 260, 3rd edn. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  25. 25.
    Garrido, P.L., Lebowitz, J.L., Maes, C., Spohn, H.: Long range correlations for conservative dynamics. Phys. Rev. A 42, 1954–l968 (1990)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Golstein, S., Lebowitz, J.L.: On the (Boltzmann) entropy of non-equilibrium systems. Phys. D Nonlinear Phenom. 193(1–4), 53–66 (2004)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Graham, R.: Macroscopic potentials, bifurcations and noise in dissipative systems. In: Moss, F., McClintock, P.V.E. (eds.) Noise in nonlinear dynamical systems, vol. 1, pp. 225–278. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  28. 28.
    Hairer, M.: Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435 (1977)ADSCrossRefGoogle Scholar
  30. 31.
    Jensen, L.: The asymmetric exclusion process in one dimension. Ph.D. dissertation, New York University, New York (2000)Google Scholar
  31. 32.
    Kawasaki, K.: Diffusion constants near the critical point for time-dependent Ising models. I. Phys. Rev. 145, 224 (1966)ADSMathSciNetCrossRefGoogle Scholar
  32. 33.
    Kim, J.U.: On a stochastic scalar conservation law. Indiana Univ. Math. J. 52, 227–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 34.
    Kondepui, D., Prigogine, I.: ModernThermodynamics: From Heat Engines to Dissipative Structures. Wiley, New York (1998)Google Scholar
  34. 35.
    Landau, L., Lifshitz, E.: Course of Theoretical Physics. Fluid Mechanics, vol. 6, 2nd edn. Butterworth-Heinemann, Oxford (1987)Google Scholar
  35. 36.
    Lions, P.-L., Perthame, B., Tadmor, E.: A kinetic formulation of multidimensional scalar conservation laws and related questions. J. AMS 7, 169–191 (1994)zbMATHGoogle Scholar
  36. 37.
    Maes, C.: On the origin and the use of fluctuation relations for the entropy. Sem Poncaré 2, 29–62 (2003)Google Scholar
  37. 38.
    Maes, C., Redig, F.: Anisotropic perturbations of the simple symmetric exclusion process : long range correlations. J. Physique (Paris) 1, 669–684 (1991)ADSMathSciNetGoogle Scholar
  38. 39.
    Mariani, M.: Large deviations principles for stochastic scalar conservation laws. Probab. Theory Relat. Fields 147(3), 607–648 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 40.
    Onsager, L., Machlup, S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505 (1953)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 41.
    Pérez-Espigares, C., Garrido, P.L., Hurtado, P.I.: Weak additivity principle for current statistics in \(d\)-dimensions. Phys. Rev. E 93(4), 040103 (2016)CrossRefGoogle Scholar
  41. 42.
    Perthame, B.: Kinetic Formulation of Conservation Laws. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  42. 43.
    Perthame, B., Tadmor, E.: A kinetic equation with kinetic entropy functions for scalar conservation laws. Commun. Math. Phys. 136(3), 501–517 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 44.
    Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on \({\mathbb{Z}}^{d}\). Commun. Math. Phys. 140(3), 417–448 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 45.
    Serre, D.: Systems of conservation laws. 1. Hyperbolicity, entropies, shock waves. Translated from the 1996 French original by I. N. Sneddon. Cambridge University Press, Cambridge (1999)Google Scholar
  45. 46.
    Spohn, H.: Large Scale Dynamics of Interacting Particle Systems. Springer, New York (1999)Google Scholar
  46. 47.
    Stratonovic, R.L.: On the probability functional of diffusion processes (in Russian). In: Proceedings of the Sixth All-Union Conference Theory Probability and Mathematical Statistics, pp. 471–483, Gosudarstv. Izdat. Politic. i Naucn. Lit. Litovsk. SSR, Vilnius (1962). English translation. In: Selected Translations in Mathematical Statistics and Probability, vol. 10, pp. 273–286. AMS (1971)Google Scholar
  47. 48.
    Tizón-Escamilla, N., Pérez-Espigares, C. Garrido, P.L., Hurtado, P.I.: Order and symmetry-breaking in the fluctuations of driven systems. arXiv preprint arXiv:1606.07507 (2016)
  48. 49.
    Tizón-Escamilla, N., Garrido, P.L., Hurtado, P.I.: On the structure of the optimal path to a fluctuation. Phys. Rev. E 95, 032119 (2017)ADSCrossRefGoogle Scholar
  49. 50.
    Varadhan, S.R.S.: Large deviations and applications. In: CBMS-NSF Regional Conference Series in Applied Mathematics, 46. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1984)Google Scholar
  50. 51.
    Varadhan, S.R.S.: Large Deviations for the Asymmetric Simple Exclusion Process. Stochastic Analysis on Large Scale Interacting Systems. Advanced Studies in Pure Mathematics, vol. 39, pp. 1–27. Mathematical Society of Japan, Tokyo (2004)Google Scholar
  51. 52.
    Whitham, G.B.: Linear and Nonlinear Waves, vol. 42. Wiley, New York (2011)zbMATHGoogle Scholar
  52. 53.
    Zinn-Justin, J.: Quantum field theory and critical phenomena. International Series of Monographs on Physics, vol. 113, 4th edn. Oxford University Press, Oxford (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.MAPMO - UMR CNRS 7349, Fédération Denis Poisson Université d’Orléans, Collegium Sciences et TechniquesOrléans Cedex 2France
  2. 2.Institut Universitaire de FranceParisFrance
  3. 3.Université Côte d’Azur, CNRS, LJADNice Cedex 02France

Personalised recommendations