Advertisement

Journal of Statistical Physics

, Volume 172, Issue 1, pp 44–73 | Cite as

Stochastic Spatial Models in Ecology: A Statistical Physics Approach

  • Simone PigolottiEmail author
  • Massimo Cencini
  • Daniel Molina
  • Miguel A. Muñoz
Article

Abstract

Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension \(D = 2\) of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.

Keywords

Neutral theory Voter model Community ecology Non-equilibrium phase transitions 

Notes

Acknowledgements

MAM is grateful to the Spanish-MINECO for financial support (under Grant FIS2013-43201-P; FEDER funds), as well as to J. Hidalgo, S. Suweis, A. Maritan, C. Borile for a long term collaboration on topics related to the content of this paper.

References

  1. 1.
    Alonso, D., Etienne, R.S., McKane, A.J.: The merits of neutral theory. Trends Ecol. Evol. 21(8), 451–457 (2006)CrossRefGoogle Scholar
  2. 2.
    Arrhenius, O.: Species and area. J. Ecol. 9(1), 95–99 (1921)CrossRefGoogle Scholar
  3. 3.
    Azaele, S., Peruzzo, F.: A phenomenological spatial model for macro-ecological patterns in species-rich ecosystems. arXiv:1609.02721 (2016)
  4. 4.
    Azaele, S., Pigolotti, S., Banavar, J.R., Maritan, A.: Dynamical evolution of ecosystems. Nature 444(7121), 926–928 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Azaele, S., Suweis, S., Grilli, J., Volkov, I., Banavar, J.R., Maritan, A.: Statistical mechanics of ecological systems: neutral theory and beyond. Rev. Mod. Phys. 88(3), 035003 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Bertuzzo, E., Suweis, S., Mari, L., Maritan, A., Rodríguez-Iturbe, I., Rinaldo, A.: Spatial effects on species persistence and implications for biodiversity. Proc. Natl. Acad. Sci. USA 108(11), 4346–4351 (2011)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Borile, C., Maritan, A., Muñoz, M.A.: The effect of quenched disorder in neutral theories. J. Stat. Mech.: Theory Exp. (2013).  https://doi.org/10.1088/1742-5468/2013/04/P04032
  8. 8.
    Borile, C., Molina-Garcia, D., Maritan, A., Muñoz, M.A.: Coexistence in neutral theories: interplay of criticality and mild local preferences. J. Stat. Mech.: Theory Exp. 2015(1), P01,030 (2015)Google Scholar
  9. 9.
    Borile, C., Muñoz, M.A., Azaele, S., Banavar, J.R., Maritan, A.: Spontaneously broken neutral symmetry in an ecological system. Phys. Rev. Lett. 109(3), 038102 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Bramson, M., Cox, J., Durrett, R.: Spatial models for species area curves. Ann. Prob. 24(4), 1727–1751 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bramson, M., Lebowitz, J.: Asymptotic behavior of densities in diffusion-dominated annihilation reactions. Phys. Rev. Lett. 61(21), 2397–2400 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    Bramson, M., Lebowitz, J.L.: Asymptotic behavior of densities for two-particle annihilating random walks. J. Stat. Phys. 62(1), 297–372 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Cencini, M., Pigolotti, S., Muñoz, M.A.: What ecological factors shape species-area curves in neutral models? PLoS ONE 7(6), e38232 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Chase, J.M., Leibold, M.A.: Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago (2003)CrossRefGoogle Scholar
  16. 16.
    Chave, J., Leigh, E.G.: A spatially explicit neutral model of \(\beta \)-diversity in tropical forests. Theor. Popul. Biol. 62(2), 153–168 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Chave, J., Muller-Landau, H.C., Levin, S.A.: Comparing classical community models: theoretical consequences for patterns of diversity. Am. Nat. 159(1), 1–23 (2002)CrossRefGoogle Scholar
  18. 18.
    Chesson, P.: Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000)CrossRefGoogle Scholar
  19. 19.
    Chesson, P.L., Warner, R.R.: Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117(6), 923–943 (1981)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Cody, M.L., Diamond, J.M.: Ecology and evolution of communities. Harvard University Press, Boston (1975)Google Scholar
  22. 22.
    Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Núnez, P., Aguilar, S., Valencia, R., Villa, G., et al.: Beta-diversity in tropical forest trees. Science 295(5555), 666–669 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Coyne, J.A., Orr, H.A.: Speciation. Sinauer Associates Inc., Sunderland (2004)Google Scholar
  24. 24.
    Croft, W.: The darwinization of linguistics. Selection 3(1), 75–91 (2002)CrossRefGoogle Scholar
  25. 25.
    Danino, M., Shem-Tov, Y., Shnerb, N.M.: Spatial neutral dynamics. arXiv preprint arXiv:1606.02837 (2016)
  26. 26.
    Danino, M., Shnerb, N.M., Azaele, S., Kunin, W.E., Kessler, D.A.: The effect of environmental stochasticity on species richness in neutral communities. J. Theor. Biol. 409, 155–164 (2016)CrossRefGoogle Scholar
  27. 27.
    Derrida, B., Jung-Muller, B.: The genealogical tree of a chromosome. J. Stat. Phys. 94(3), 277–298 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Dornic, I., Chaté, H., Chave, J., Hinrichsen, H.: Critical coarsening without surface tension: the universality class of the voter model. Phys. Rev. Lett. 87(4), 045701 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    Drakare, S., Lennon, J.J., Hillebrand, H.: The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecol. Lett. 9(2), 215–227 (2006)CrossRefGoogle Scholar
  30. 30.
    Durrett, R., Levin, S.A.: Stochastic spatial models: a user’s guide to ecological applications. Philos. Trans. R. Soc. Lond. B Biol. Sci. 343(1305), 329–350 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    Durrett, R., Levin, S.: Spatial models for species–area curves. J. Theor. Biol. 179(2), 119–127 (1996)CrossRefGoogle Scholar
  32. 32.
    Etienne, R.S., Alonso, D.: Neutral community theory: how stochasticity and dispersal-limitation can explain species coexistence. J. Stat. Phys. 128(1), 485–510 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Etienne, R.S., Rosindell, J.: The spatial limitations of current neutral models of biodiversity. PLoS ONE 6(3), e14717 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Ewens, W.: The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3(1), 87–112 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Fenchel, T., Finlay, B.J.: The ubiquity of small species: patterns of local and global diversity. BioScience 54(8), 777–784 (2004)CrossRefGoogle Scholar
  36. 36.
    Finlay, B., Fenchel, T.: Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155(2), 237–244 (2004)CrossRefGoogle Scholar
  37. 37.
    Frachebourg, L., Krapivsky, P., Redner, S.: Heterogeneous catalysis on a disordered surface. Phys. Rev. Lett. 75(15), 2891 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    Gardiner, C.: Stochastic methods. Springer series in synergetics. Springer, Berlin (2009)Google Scholar
  39. 39.
    Gilbert, B., Lechowicz, M.J.: Neutrality, niches, and dispersal in a temperate forest understory. Proc. Natl. Acad. Sci. USA 101(20), 7651–7656 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Gillespie, J.: Population genetics: a concise guide. Johns Hopkins University Press, Baltimore (2004)Google Scholar
  41. 41.
    Granovsky, B.L., Madras, N.: The noisy voter model. Stoch. Proc. Appl. 55(1), 23–43 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Griffeath, D.: The basic contact processes. Stoch. Proc. Appl. 11(2), 151–185 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Grilli, J., Azaele, S., Banavar, J.R., Maritan, A.: Absence of detailed balance in ecology. EPL (Europhys. Lett.) 100(3), 38002 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Haegeman, B., Loreau, M.: A mathematical synthesis of niche and neutral theories in community ecology. J. Theor. Biol. 269, 150–165 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Hidalgo, J., Suweis, S., Maritan, A.: Species coexistence in a neutral dynamics with environmental noise. J. Theor. Biol. 413, 1–10 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Hinrichsen, H.: Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49(7), 815–958 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    Holley, R., Liggett, T.: Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3(4), 643–663 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Horner-Devine, M., Lage, M., Hughes, J., Bohannan, B.: A taxa-area relationship for bacteria. Nature 432(7018), 750–753 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    Houchmandzadeh, B.: Neutral aggregation in finite-length genotype space. Phys. Rev. E 95(1), 012402 (2017)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Hubbell, S.: The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton (2001)Google Scholar
  51. 51.
    Jeraldo, P., Sipos, M., Chia, N., Brulc, J.M., Dhillon, A.S., Konkel, M.E., Larson, C.L., Nelson, K.E., Qu, A., Schook, L.B., et al.: Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes. Proc. Natl. Acad. Sci. USA 109(25), 9692–9698 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    Kimura, M.: “Stepping Stone” model of population. Ann. Rept. Nat. Inst. Genet. Jpn. 3, 6263 (1953)Google Scholar
  53. 53.
    Kimura, M.: The neutral theory of molecular evolution. Cambridge University Press, Cambridge (1983)CrossRefGoogle Scholar
  54. 54.
    Kimura, M., Weiss, G.H.: The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49(4), 561 (1964)Google Scholar
  55. 55.
    Kirman, A.: Ants, rationality, and recruitment. Q. J. Econ. 108(1), 137–156 (1993)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Korolev, K.S., Avlund, M., Hallatschek, O., Nelson, D.R.: Genetic demixing and evolution in linear stepping stone models. Rev. Mod. Phys. 82(2), 1691 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    Krapivsky, P.: Kinetics of monomer–monomer surface catalytic reactions. Phys. Rev. A 45(2), 1067 (1992)ADSCrossRefGoogle Scholar
  58. 58.
    Lee, B.P.: Renormalization group calculation for the reaction ka to 0. J Phys. A Math. Gen. 27(8), 2633 (1994)ADSCrossRefGoogle Scholar
  59. 59.
    Levin, S.A.: The problem of pattern and scale in ecology: the Robert H. Macarthur award lecture. Ecology 73(6), 1943–1967 (1992)CrossRefGoogle Scholar
  60. 60.
    Liggett, T.: Interacting particle systems. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  61. 61.
    Loreau, M.: Are communities saturated? On the relationship between \(\alpha \), \(\beta \) and \(\gamma \) diversity. Ecol. Lett. 3(2), 73–76 (2000)CrossRefGoogle Scholar
  62. 62.
    MacArthur, R.: On the relative abundance of species. Am. Nat. 94(874), 25–36 (1960)CrossRefGoogle Scholar
  63. 63.
    Marro, J., Dickman, R.: Nonequilibrium phase transitions in lattice models. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  64. 64.
    Masuda, N., Gibert, N., Redner, S.: Heterogeneous voter models. Phys. Rev. E 82(1), 010103 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    McGill, B.: Strong and weak tests of macroecological theory. Oikos 102(3), 679–685 (2003)CrossRefGoogle Scholar
  66. 66.
    McKane, A.J., Alonso, D., Solé, R.V.: Analytic solution of Hubbell’s model of local community dynamics. Theor. Popul. Biol. 65(1), 67–73 (2004)CrossRefzbMATHGoogle Scholar
  67. 67.
    Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91, 028701 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    Mobilia, M., Petersen, A., Redner, S.: On the role of zealotry in the voter model. J. Stat. Mech. Theor. Exp. (2007).  https://doi.org/10.1088/1742-5468/2007/08/P08029
  69. 69.
    Molofsky, J., Durrett, R., Dushoff, J., Griffeath, D., Levin, S.: Local frequency dependence and global coexistence. Theor. Popul. Biol. 55(3), 270–282 (1999).  https://doi.org/10.1006/tpbi.1998.1404. http://www.sciencedirect.com/science/article/pii/S0040580998914046
  70. 70.
    Moran, P.A.P.: Random processes in genetics. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 54, pp. 60–71. Cambridge University Press (1958)Google Scholar
  71. 71.
    Moran, P.A.P.: The statistical process of evolutionary theory. Clarendon Press, Oxford (1962)zbMATHGoogle Scholar
  72. 72.
    Noble, A.E., Fagan, W.F.: A unification of niche and neutral theories quantifies the impact of competition on extinction. arXiv preprint arXiv:1102.0052 (2011)
  73. 73.
    Noble, A.E., Hastings, A., Fagan, W.F.: Multivariate moran process with Lotka–Volterra phenomenology. Phys. Rev. Lett. 107, 228101 (2011)ADSCrossRefGoogle Scholar
  74. 74.
    O’Dwyer, J.P., Cornell, S.J.: Cross-scale neutral ecology and the maintenance of biodiversity. arXiv preprint arXiv:1705.07856 (2017)
  75. 75.
    O’Dwyer, J.P., Green, J.L.: Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity. Ecol. Lett. 13(1), 87–95 (2010)CrossRefGoogle Scholar
  76. 76.
    Peliti, L.: Renormalisation of fluctuation effects in the A+ A to A reaction. J. Phys. A Math. Gen. 19, L365–L367 (1986)ADSCrossRefGoogle Scholar
  77. 77.
    Pigolotti, S., Cencini, M.: Speciation-rate dependence in species–area relationships. J. Theor. Biol. 260(1), 83–89 (2009)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Pigolotti, S., Cencini, M.: Coexistence and invasibility in a two-species competition model with habitat-preference. J. Theor. Biol. 265(4), 609–617 (2010)MathSciNetCrossRefGoogle Scholar
  79. 79.
    Pigolotti, S., Cencini, M.: Species abundances and lifetimes: from neutral to niche-stabilized communities. J. Theor. Biol. 338, 1–8 (2013)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Pigolotti, S., Flammini, A., Marsili, M., Maritan, A.: Species lifetime distribution for simple models of ecologies. Proc. Natl. Acad. Sci. USA 102(44), 15747–15751 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Pinto, O.A., Munoz, M.A.: Quasi-neutral theory of epidemic outbreaks. PLoS ONE 6(7), e21946 (2011)ADSCrossRefGoogle Scholar
  82. 82.
    Plotkin, J.B., Chave, J., Ashton, P.S.: Cluster analysis of spatial patterns in Malaysian tree species. Am. Nat. 160(5), 629–644 (2002)CrossRefGoogle Scholar
  83. 83.
    Preston, F.: Time and space and the variation of species. Ecology 41(4), 611–627 (1960)CrossRefGoogle Scholar
  84. 84.
    Ricklefs, R.E.: The unified neutral theory of biodiversity: do the numbers add up? Ecology 87(6), 1424–1431 (2006)CrossRefGoogle Scholar
  85. 85.
    Ridolfi, L., D’Odorico, P., Laio, F.: Noise-induced phenomena in the environmental sciences. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  86. 86.
    Rosenzweig, M.: Species diversity in space and time. Cambridge Univ Press, Cambridge (1995)CrossRefGoogle Scholar
  87. 87.
    Rosindell, J., Cornell, S.: Species–area relationships from a spatially explicit neutral model in an infinite landscape. Ecol. Lett. 10(7), 586–595 (2007)CrossRefGoogle Scholar
  88. 88.
    Rosindell, J., Cornell, S.: Species–area curves, neutral models, and long-distance dispersal. Ecology 90(7), 1743–1750 (2009)CrossRefGoogle Scholar
  89. 89.
    Rosindell, J., Cornell, S.J.: Universal scaling of species-abundance distributions across multiple scales. Oikos 122(7), 1101–1111 (2013)CrossRefGoogle Scholar
  90. 90.
    Rosindell, J., Cornell, S.J., Hubbell, S.P., Etienne, R.S.: Protracted speciation revitalizes the neutral theory of biodiversity. Ecol. Lett. 13(6), 716–727 (2010)CrossRefGoogle Scholar
  91. 91.
    Rosindell, J., Hubbell, S.P., Etienne, R.S.: The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26(7), 340–348 (2011)CrossRefGoogle Scholar
  92. 92.
    Rosindell, J., Hubbell, S.P., He, F., Harmon, L.J., Etienne, R.S.: The case for ecological neutral theory. Trends Ecol. Evol. 27(4), 203–208 (2012)CrossRefGoogle Scholar
  93. 93.
    Schweitzer, F., Behera, L.: Nonlinear voter models: the transition from invasion to coexistence. Eur. Phys. J. B Condens. Matter Complex Syst. 67(3), 301–318 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    Shem-Tov, Y., Danino, M., Shnerb, N.M.: Solution of the spatial neutral model yields new bounds on the Amazonian species richness. Sci. Rep. (2017).  https://doi.org/10.1038/srep42415
  95. 95.
    Spanio, T., Hidalgo, J., Muñoz, M.A.: Impact of environmental colored noise in single-species population dynamics. Phys. Rev. E 96, 042301 (2017).  https://doi.org/10.1103/PhysRevE.96.042301 ADSCrossRefGoogle Scholar
  96. 96.
    Suweis, S., Bertuzzo, E., Mari, L., Rodriguez-Iturbe, I., Maritan, A., Rinaldo, A.: On species persistence-time distributions. J. Theor. Biol. 303, 15–24 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  97. 97.
    Suweis, S., Bertuzzo, E., Mari, L., Rodriguez-Iturbe, I., Maritan, A., Rinaldo, A.: On species persistence-time distributions. J. Theor. Biol. 303, 15–24 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  98. 98.
    Tilman, D.: Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl. Acad. Sci. USA 101(30), 10854 (2004)ADSCrossRefGoogle Scholar
  99. 99.
    Tokeshi, M.: Species abundance patterns and community structure. Adv. Ecol. Res. 24, 111–186 (1993)CrossRefGoogle Scholar
  100. 100.
    Tuomisto, H.: A diversity of beta diversities: straightening up a concept gone awry. Part 1: defining beta diversity as a function of alpha and gamma diversity. Ecography 33(1), 2–22 (2010)CrossRefGoogle Scholar
  101. 101.
    Vallade, M., Houchmandzadeh, B.: Analytical solution of a neutral model of biodiversity. Phys. Rev. E 68(6), 061902 (2003)ADSCrossRefGoogle Scholar
  102. 102.
    Villa Martin, P., Hidalgo, J., Rubio de Casas, R., Muñoz, M.: Eco-evolutionary model of rapid phenotypic diversification in species-rich communities. PLoS Comput. Biol. 12, e1005139 (2016)CrossRefGoogle Scholar
  103. 103.
    Volkov, I., Banavar, J., Hubbell, S., Maritan, A.: Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003)ADSCrossRefGoogle Scholar
  104. 104.
    Zillio, T., Volkov, I., Banavar, J.R., Hubbell, S.P., Maritan, A.: Spatial scaling in model plant communities. Phys. Rev. Lett. 95(9), 098101 (2005)ADSCrossRefGoogle Scholar
  105. 105.
    Zillio, T., Banavar, J.R., Green, J.L., Harte, J., Maritan, A.: Incipient criticality in ecological communities. Proc. Natl. Acad. Sci. USA 105(48), 18714–18717 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Biological Complexity UnitOkinawa Institute of Science and Technology and Graduate UniversityOnnaJapan
  2. 2.Istituto dei Sistemi ComplessiConsiglio Nazionale delle RicercheRomeItaly
  3. 3.BCAM - Basque Center for Applied MathematicsBilbaoSpain
  4. 4.Departamento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y ComputacionalUniversidad de GranadaGranadaSpain

Personalised recommendations