Advertisement

Journal of Statistical Physics

, Volume 172, Issue 1, pp 105–113 | Cite as

Natural Selection as Coarsening

  • Matteo SmerlakEmail author
Article

Abstract

Analogies between evolutionary dynamics and statistical mechanics, such as Fisher’s second-law-like “fundamental theorem of natural selection” and Wright’s “fitness landscapes”, have had a deep and fruitful influence on the development of evolutionary theory. Here I discuss a new conceptual link between evolution and statistical physics. I argue that natural selection can be viewed as a coarsening phenomenon, similar to the growth of domain size in quenched magnets or to Ostwald ripening in alloys and emulsions. In particular, I show that the most remarkable features of coarsening—scaling and self-similarity—have strict equivalents in evolutionary dynamics. This analogy has three main virtues: it brings a set of well-developed mathematical tools to bear on evolutionary dynamics; it suggests new problems in theoretical evolution; and it provides coarsening physics with a new exactly soluble model.

Keywords

Natural selection Coarsening Scaling limit Self-similarity Regular variation Dissipation 

Notes

Acknowledgements

The analogy between selection and Ostwald ripening was pointed out to me by Felix Otto during a visit at the Max Planck Institute for Mathematics in the Sciences. I thank Robert Pego and Baruch Meerson for comments on this manuscript. Research at the Perimeter Institute is supported in part by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

References

  1. 1.
    Neher, R.A., Shraiman, B.I.: Statistical genetics and evolution of quantitative traits. Rev. Mod. Phys. 83(4), 1283–1300 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Iwasa, Y.: Free fitness that always increases in evolution. J. Theor. Biol. 135(3), 265–281 (1988)CrossRefGoogle Scholar
  3. 3.
    Franz, S., Peliti, L., Sellitto, M.: An evolutionary version of the random energy model. J. Phys. A: Math. Gen. 26(23), L1195 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    Barton, N.H., Coe, J.B.: On the application of statistical physics to evolutionary biology. J. Theor. Biol. 259(2), 317–324 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mustonen, V., Lässig, M.: Fitness flux and ubiquity of adaptive evolution. Proc. Natl. Acad. Sci. USA 107(9), 4248–4253 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Fisher, R.A.: The Genetical Theory of Natural Selection. Oxford University Press, Oxford (1930). A Complete Variorum EditionCrossRefzbMATHGoogle Scholar
  7. 7.
    Krapivsky, P.L., Redner, S., Ben-Naim, E.: A Kinetic View of Statistical Physics. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19(1–2), 35–50 (1961)ADSCrossRefGoogle Scholar
  9. 9.
    Wagner, C.: Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Elektrochem. 65(7–8), 581–591 (1961)Google Scholar
  10. 10.
    Giron, B., Meerson, B., Sasorov, P.V.: Weak selection and stability of localized distributions in Ostwald ripening. Phys. Rev. E 58(4), 4213 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Niethammer, B., Pego, R.L.: Non-self-similar behavior in the LSW theory of Ostwald ripening. J. Stat. Phys. 95(5–6), 867–902 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ewens, W.J.: An interpretation and proof of the fundamental theorem of natural selection. Theor. Popul. Biol. 36(2), 167–180 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Edwards, A.W.F.: The fundamental theorem of natural selection. Biol. Rev. 69(4), 443–474 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Frank, S.A.: The price equation, fisher’s fundamental theorem, kin selection, and causal analysis. Evolution 51(6), 1712 (1997)CrossRefGoogle Scholar
  15. 15.
    Lewontin, R.C.: The Genetic Basis of Evolutionary Change. Columbia University Press, New York (1974)Google Scholar
  16. 16.
    Barton, N.H., Turelli, M.: Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genet. Res. 49(02), 157–173 (1987)CrossRefGoogle Scholar
  17. 17.
    Gerrish, P.J., Sniegowski, P.D., Simos, T.E.: Adding dynamical sufficiency to fisher’s fundamental theorem of natural selection. AIP Conf. Proc. 1389, 1260–1262 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Eshel, I.: On evolution in a population with an infinite number of types. Theor. Popul. Biol. 2, 209–236 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Smerlak, M., Youssef, A.: Limiting fitness distributions in evolutionary dynamics. J. Theor. Biol. 416, 68–80 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Smerlak, M., Youssef, A.: Universal statistics of selected values. EPL 117(5), 50003 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Balkema, A.A., Klüppelberg, C., Resnick, S.I.: Domains of attraction for exponential families. Stoch. Proc. Appl. 107(1), 83–103 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Collet, J.-F., Goudon, T., Collet, J.-F.: On solutions of the Lifshitz-Slyozov model. Nonlinearity 13(4), 1239–1262 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Niethammer, B., Pego, R.L.: On the initial-value problem in the Lifshitz-Slyozov-Wagner theory of Ostwald ripening. SIAM J. Math. Anal. 31(3), 467–485 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195(4–5), 127–293 (1990)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    de Haan, L., Ferreira, A.: Extreme Value Theory. An Introduction. Springer, New York, NY (2007)zbMATHGoogle Scholar
  26. 26.
    Pego, R. L.: Dynamics in Models of Coarsening, Coagulation, Condensation and Quantization. Lectures on Dynamics in Models of Coarsening and Coagulation. WORLD SCIENTIFIC, Singapore (2007)Google Scholar
  27. 27.
    Menon, G., Pego, R.L.: Approach to self-similarity in Smoluchowski's coagulation equations. Commun. Pure Appl. Math. 57(9), 1197–1232 (2004)CrossRefzbMATHGoogle Scholar
  28. 28.
    Ambrosio, L., Gigli, N., Savare, G.: Gradient flows. In: Metric Spaces and in the Space of Probability Measures. Springer, Basel (2008).  https://doi.org/10.1007/978-3-7643-8722-8
  29. 29.
    Jordan, R., Kinderlehrer, D., Otto, F.: Free energy and the Fokker-Planck equation. Phys. D: Nonlinear Phenom. 107(2–4), 265–271 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2003)CrossRefzbMATHGoogle Scholar
  31. 31.
    Artstein, S., Ball, K., Barthe, F., Naor, A.: Solution of Shannon’s problem on the monotonicity of entropy. J. Am. Math. Soc. 17, 975–982 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  33. 33.
    Niethammer, B.: Macroscopic limits of the Becker-Döring equations. Commun. Math. Sci. 2(Supplemental Issue 1), 85–92 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations