Journal of Statistical Physics

, Volume 168, Issue 2, pp 447–469 | Cite as

Power Spectrum of a Noisy System Close to a Heteroclinic Orbit

  • Jordi Giner-Baldó
  • Peter J. Thomas
  • Benjamin LindnerEmail author


We consider a two-dimensional dynamical system that possesses a heteroclinic orbit connecting four saddle points. This system is not able to show self-sustained oscillations on its own. If endowed with white Gaussian noise it displays stochastic oscillations, the frequency and quality factor of which are controlled by the noise intensity. This stochastic oscillation of a nonlinear system with noise is conveniently characterized by the power spectrum of suitable observables. In this paper we explore different analytical and semianalytical ways to compute such power spectra. Besides a number of explicit expressions for the power spectrum, we find scaling relations for the frequency, spectral width, and quality factor of the stochastic heteroclinic oscillator in the limit of weak noise. In particular, the quality factor shows a slow logarithmic increase with decreasing noise of the form \(Q\sim [\ln (1/D)]^2\). Our results are compared to numerical simulations of the respective Langevin equations.


Power Spectrum Saddle Point Noise Intensity Planck Equation Heteroclinic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



JGB, PJT, and BL would like to acknowledge funding by La Caixa and DAAD (program 50015239), the National Science Foundation (Grant DMS-1413770), and BMBF (FKZ: 486 01GQ1001A) respectively.


  1. 1.
    Bakhtin, Y.: Noisy heteroclinic networks. Probab. Theory Relat. Fields 150(1–2), 1 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Burns, S., Xing, D., Shapley, R.: Is gamma-band activity in the local field potential of V1 cortex a “clock” or filtered noise? J. Neurosci. 31, 9658 (2011)CrossRefGoogle Scholar
  3. 3.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Ermentrout, G.B., Beverlin, B., Troyer, T., Netoff, T.I.: The variance of phase-resetting curves. J. Comput. Neurosci. 31(2), 185–197 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gardiner, C.W.: Handbook of Stochastic Methods. Springer, Berlin (1985)Google Scholar
  6. 6.
    Giner-Baldó, J.: Stochastic oscillations and their power spectrum. Master’s thesis, Freie Universität Berlin (2016)Google Scholar
  7. 7.
    Gleeson, J.P., O’Doherty, F.: Non-Lorentzian spectral lineshapes near a Hopf bifurcation. SIAM J. Appl. Math. 66(5), 1669–1688 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, Amsterdam (2012)zbMATHGoogle Scholar
  9. 9.
    Jülicher, F., Dierkes, K., Lindner, B., Prost, J., Martin, P.: Spontaneous movements and linear response of a noisy oscillator. Eur. Phys. J. E. 29(4), 449 (2009)CrossRefGoogle Scholar
  10. 10.
    Jung, P.: Periodically driven stochastic systems. Phys. Rep. 234, 175 (1993)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kummer, U., Krajnc, B., Pahle, J., Green, A.K., Dixon, C.J., Marhl, M.: Transition from stochastic to deterministic behavior in calcium oscillations. Biophys. J. 89, 1603 (2005)CrossRefGoogle Scholar
  12. 12.
    Lindner, B., García-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321–424 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Lindner, B., Schimansky-Geier, L.: Coherence and stochastic resonance in a two-state system. Phys. Rev. E. 61, 6103 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Lindner, B., Sokolov, I.M.: Giant diffusion of underdamped particles in a biased periodic potential. Phys. Rev. E 93, 042106 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Martin, P., Bozovic, D., Choe, Y., Hudspeth, A.J.: Spontaneous oscillation by hair bundles of the bullfrog’s sacculus. J. Neurosci. 23, 4533 (2003)Google Scholar
  16. 16.
    May, R.M., Leonard, W.J.: Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29(2), 243–253 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Meiss, J.D.: Differential Dynamical Systems. Society for Industrial and Applied Mathematics, Philadelphia (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4(5), e1000072 (2008)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Rabinovich, M.I., Lecanda, P., Huerta, R., Abarbanel, H.D.I., Laurent, G.: Dynamical encoding by networks of competing neuron groups: winnerless competition. Phys. Rev. Lett. 87(6), 068102 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Rabinovich, M.I., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78, 1213 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  22. 22.
    Shaw, K.M., Park, Y.-M., Chiel, H.J., Thomas, P.J.: Phase resetting in an asymptotically phaseless system: on the phase response of limit cycles verging on a heteroclinic orbit. SIAM J. Appl. Dyn. Syst. 11(1), 350 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Stone, E., Holmes, P.: Random perturbations of heteroclinic attractors. SIAM J. Appl. Math. 50, 726 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Stratonovich, R.L.: Topics in the Theory of Random Noise. Gordon and Breach, New York (1967)zbMATHGoogle Scholar
  25. 25.
    Thomas, P.J., Lindner, B.: Asymptotic phase of stochastic oscillators. Phys. Rev. Lett. 113, 254101 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jordi Giner-Baldó
    • 1
  • Peter J. Thomas
    • 2
  • Benjamin Lindner
    • 1
    • 3
    Email author
  1. 1.Bernstein Center for Computational NeuroscienceBerlinGermany
  2. 2.Department of Mathematics, Applied Mathematics, and StatisticsCase Western Reserve UniversityClevelandUSA
  3. 3.Department of PhysicsHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations