Advertisement

Journal of Statistical Physics

, Volume 167, Issue 5, pp 1164–1179 | Cite as

Boundary Conditions for Translation-Invariant Gibbs Measures of the Potts Model on Cayley Trees

  • D. Gandolfo
  • M. M. Rahmatullaev
  • U. A. Rozikov
Article

Abstract

We consider translation-invariant splitting Gibbs measures (TISGMs) for the q-state Potts model on a Cayley tree of order two. Recently a full description of the TISGMs was obtained, and it was shown in particular that at sufficiently low temperatures their number is \(2^{q}-1\). In this paper for each TISGM \(\mu \) we explicitly give the set of boundary conditions such that limiting Gibbs measures with respect to these boundary conditions coincide with \(\mu \).

Keywords

Cayley tree Potts model Boundary condition Gibbs measure 

Mathematics Subject Classification

82B26 60K35 

Notes

Acknowledgements

U. Rozikov thanks Aix-Marseille University Institute for Advanced Study IMéRA (Marseille, France) for support by a residency scheme. We thank both referees for their helpful suggestions.

References

  1. 1.
    Coquille, L.: Examples of DLR states which are not weak limits of finite volume Gibbs measures with deterministic boundary conditions. J. Stat. Phys. 159(4), 958–971 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017). http://www.unige.ch/math/folks/velenik/smbook/index.html
  3. 3.
    Gandolfo, D., Rakhmatullaev, M.M., Rozikov, U.A., Ruiz, J.: On free energies of the Ising model on the Cayley tree. J. Stat. Phys. 150(6), 1201–1217 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ganikhodjaev, N.N.: On pure phases of the three-state ferromagnetic Potts model on the second-order Bethe lattice. Theor. Math. Phys. 85(2), 1125–1134 (1990)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ganikhodzhaev, N.N.: On pure phases of the ferromagnetic Potts model Bethe lattices. Dokl. Akad. Nauk. Uzb. 6–7, 4–7 (1992)Google Scholar
  6. 6.
    Georgii, H.O.: Gibbs Measures and Phase Transitions, 2nd edn. Walter de Gruyter, Berlin (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Higuchi, Y.: Remarks on the limiting Gibbs states on a \((d+1)\)-tree. Publ. RIMS Kyoto Univ. 3, 335–348 (1977)Google Scholar
  8. 8.
    Kuelske, C., Rozikov, U.A.: Fuzzy transformations and extremaity of Gibbs measures for the Potts model on a Cayley tree. Random Struct. Algorithms (2016). doi: 10.1002/rsa.20671
  9. 9.
    Kuelske, C., Rozikov, U.A., Khakimov, R.M.: Description of all translation-invariant (splitting) Gibbs measures for the Potts model on a Cayley tree. J. Stat. Phys. 156(1), 189–200 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rozikov, U.A.: On pure phase of the anti-ferromagnetic Potts model on the Cayley tree. Uzbek Math. J. 1, 73–77 (1999) (in Russian) Google Scholar
  11. 11.
    Rozikov, U.A.: Gibbs Measures on Cayley Trees. World Scientific Publishing, Singapore (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • D. Gandolfo
    • 1
  • M. M. Rahmatullaev
    • 2
  • U. A. Rozikov
    • 2
  1. 1.Centre de Physique Théorique, UMR 7332, Aix Marseille Univ, Université de Toulon, CNRS, CPTMarseilleFrance
  2. 2.Institute of MathematicsTashkentUzbekistan

Personalised recommendations