Journal of Statistical Physics

, Volume 167, Issue 5, pp 1221–1232 | Cite as

Information Dynamics at a Phase Transition

  • Damian Sowinski
  • Marcelo Gleiser


We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg–Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and fidelity of information processing is maximized at criticality.


Information theory Complexity Phase transitions Critical phenomena Configurational entropy 



DS was supported by a Hull Fellowship at Dartmouth College. MG was supported in part by a US Department of Energy Grant DE-SC001038.


  1. 1.
    Shannon, C.E.: The mathematical theory of communication. Bell Syst. Techn. J. 27:379–423, 623–656 (1948)Google Scholar
  2. 2.
    Huffman, D.: A method for the construction of minimum-redundancy codes. Proc. IRE 40, 1098–1101 (1952)CrossRefzbMATHGoogle Scholar
  3. 3.
    Sethna, J.P.: Statistical Mechanics: Entropy, Order Paramenters, and Complexity. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  4. 4.
    Seeger, R.J.: On teaching thermophysics. Am. J. Phys. 26, 248–257 (1958)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Brillouin, L.: Science and Information Theory, pp. 318–328. Academic Press, New York (1956)zbMATHGoogle Scholar
  6. 6.
    ibid.: Thermodynamics, statistics, and information. Am. J. Phys. 29, 318–328 (1961)Google Scholar
  7. 7.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Leff, H.S., Rex, A.F. (eds.): Maxwell’s Demon: Entropy, Information, Computing. Princeton University Press, Princeton (1990)Google Scholar
  9. 9.
    Parrondo, J.M.R., Horowitz, J.M., Sagawa, T.: Thermodynamics of information. Nat. Phys. 11, 131–139 (2015)CrossRefGoogle Scholar
  10. 10.
    Gleiser, M., Stamatopoulos, N.: Entropic measure for localized energy configurations: kinks, bounces, and bubbles. Phys. Lett. B 713, 304–307 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Correa, R.A.C., de Souza Dutra, A., Gleiser, M.: Information-entropic measure of energy-degenerate kinks in two-field models. Phys. Lett. B 737, 388–394 (2014)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Gleiser, M., Sowinski, D.: Information-entropic stability bound for compact objects: application to Q-balls and the Chandrasekhar limit of polytropes. Phys. Lett. B 727, 272–275 (2013)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    Gleiser, M., Jiang, N.: Stability bounds on compact astrophysical objects from information-entropic measure. Phys. Rev. D 92, 044046 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Gleiser, M., Stamatopoulos, N.: Information content of spontaneous symmetry breaking. Phys. Rev. D 86, 045004 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Gleiser, M., Graham, N., Stamatopoulos, N.: Generation of coherent structures after cosmic inflation. Phys. Rev. D 83, 096010 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Gleiser, M., Graham, N.: Transition to order after hilltop inflation. Phys. Rev. D 89, 083502 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Gleiser, M., Sowinski, D.: Information-entropic signature of the critical point. Phys. Lett. B 747, 125–128 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Goldenfeld, N.: Lectures on Phase Transitions and The Renormalization Group. Frontiers in Physics, vol. 85. Addison-Wesley, New York (1992)Google Scholar
  19. 19.
    Landau, L.: On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19–32 (1937)Google Scholar
  20. 20.
    Hunt, J.C.R., Philips, O.M., Williams, D. (eds.): Turbulence and Stochastic Processes: Kolmogorov’s Ideas 50 Years On, vol. 434, pp. 1–240. The Royal Society, London (1991)Google Scholar
  21. 21.
    Langer, J.S.: An introduction to the kinetics of first-order phase transitions. In: Godrche, G. (ed.) Solids Far from Equilibrium. Cambridge University Press, Cambridge (1992)Google Scholar
  22. 22.
    Vilenkin, A., Shellard, E.P.S.: Cosmic Strings and Other Topological Defects. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  23. 23.
    Borrill, J., Gleiser, M.: Matching numerical simulations to continuum field theories: a lattice renormalization study. Nucl. Phys. B 483, 416 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    Lindeberg, T.: Scale-space for discrete signals. PAMI 12(3), 234–254 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Center for Sleep and ConsciousnessUniversity of WisconsinMadisonUSA
  2. 2.Department of Physics and AstronomyDartmouth CollegeHanoverUSA

Personalised recommendations