Advertisement

Journal of Statistical Physics

, Volume 167, Issue 1, pp 123–134 | Cite as

Heat Flux for a Relativistic Dilute Bidimensional Gas

  • A. L. García-Perciante
  • A. R. Méndez
  • E. Escobar-Aguilar
Article
  • 126 Downloads

Abstract

Relativistic kinetic theory predicts substantial modifications to the dissipation mechanisms of a dilute gas. For the heat flux, these include (in the absence of external forces) a correction to the thermal conductivity and the appearance of a new, purely relativistic, term proportional to the density gradient. In this work we obtain such constitutive equation for the particular case of a bidimensional gas. The calculation is based on the Chapman–Enskog solution to the relativistic Boltzmann equation and yields analytical expressions for the corresponding transport coefficients, which are evaluated for the particular case of hard disks. These results will be useful for numerical simulations and may be applied to bidimensional non-dense materials.

Keywords

Relativistic kinetic theory Bidimensional gases Chapman–Enskog Heat conduction 

Notes

Acknowledgements

The authors acknowledge support from CONACyT through Grant number CB2011/167563.

References

  1. 1.
    Sengers, J.V.: In: Brittin, W. (ed.) Lectures in Theoretical Physics, Kinetic Theory, vol. IXC, pp. 335–374. Gordon and Breach, New York (1967)Google Scholar
  2. 2.
    Sengers, J.V.: Divergence in the density expansion of the transport coefficients of a two-dimensional gas. Phys. Fluids 9, 1685–1696 (1966)ADSCrossRefGoogle Scholar
  3. 3.
    Gass, D.M.: Enskog theory for a rigid disk fluid. J. Chem. Phys. 54, 1898 (1971)ADSCrossRefGoogle Scholar
  4. 4.
    Risso, D., Cordero, P.: Two-dimensional gas of disks: thermal conductivity. J. Stat. Phys. 82, 1453–1466 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Risso, D., Cordero, P.: Dilute gas Couette flow: theory and molecular dynamics simulation. Phys. Rev. E 56, 489–496 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    Cohen, E.G.D.: Non existence of a density expansion of the transport coefficients in a moderately dense gas. J. Stat. Phys. 137, 878–889 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    García-Rojo, R., Luding, S.: Javier Brey, J.: Transport coefficients for dense hard-disk systems. Phys. Rev. E 74, 061305 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Mareschal, M., Kestemont, E.: Measurements of long-range correlations by nonequilibrium molecular dynamics. Phys. Rev. A 30, 1158–1160 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    Ghodrat, M., Montakhab, A.: Molecular dynamics simulation of a relativistic gas: thermostatistical properties. Comput. Phys. Commun. 182, 1909–1913 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Muller, M., Schmalian, J., Fritz, L.: Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 025301 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Mendoza, M., Herrmann, H.J., Succi, S.: Preturbulent regimes in graphene flow. Phys. Rev. Lett. 106, 156601 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Torre, A.T., Geim, A.K., Polini, M.: Nonlocal transport and the hydrodynamic shear viscosity in graphene. Phys. Rev. B 92, 165433 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Montakhab, A., Ghodrat, M., Barati, M.: Statistical thermodynamics of a two-dimensional relativistic gas. Phys. Rev. E 79(3), 031124 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Ghodrat, M., Montakhab, A.: Heat transport and diffusion in a canonical model of a relativistic gas. Phys. Rev. E 87, 032120 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Mendoza, M., Araujo, N., Succi, S., Herrmann, H.: Transition in the equilibrium distribution function of relativistic particles. Sci. Rep. 2, 611 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Montakhab, A., Shahsavar, L., Ghodrat, M.: Thermodynamics of a morphological transition in a relativistic gas. Physica A 412, 32 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Cercignani, C., Kremer, G.M.: The Relativistic Boltzmann Equation: Theory and Applications, 3rd edn. Cambridge University Press, Cambridge (1991)zbMATHGoogle Scholar
  18. 18.
    García-Perciante, A.L., Sandoval-Villalbazo, A., Garcia-Colín, L.S.: On the microscopic nature of dissipative effects in special relativistic kinetic theory. J. Non Equilib. Thermodyn. 37, 4361 (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    García-Perciante, A.L., Sandoval-Villalbazo, A.: Remarks on relativistic kinetic theory to first order in the gradients. J. Non Newton. Fluid Mech. 165, 1024–1028 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Tsumura, K., Kunihiro, T.: Stable first-order particle-frame relativistic hydrodynamics for dissipative systems. Phys. Lett. B. 668, 425 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Van, P., Biro, T.S.: First order and stable relativistic dissipative hydrodynamics. Phys. Lett. B 709, 106 (2012)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Tsumura, K., Kunihiro, T., Ohnishi, K.: Derivation of covariant dissipative fluid dynamics in the renormalization-group method. Phys. Lett. B. 646, 134 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shahsavar, L., Ghodrat, M., Montakhab, A.: Molecular dynamics approach to dissipative relativistic hydrodynamics: propagation of fluctuations. Phys. Rev. C 94, 064905 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Moratto, V., Garca-Perciante, A.L.: On the role of the chaotic velocity in relativistic kinetic theory. In: AIP Conference Proceedings, vol. 1578, p. 86 (2014)Google Scholar
  25. 25.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  26. 26.
    Courant, C., Hilbert, D.: Methods of Mathematical Physics. Wiley, New York (1989)CrossRefzbMATHGoogle Scholar
  27. 27.
    García-Perciante, A.L., Méndez, A.R.: Heat conduction in relativistic neutral gases revisited. Gen. Rel. Grav. 43, 2257–2275 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hirshfelder, J.O., Curtiss, C.F., Byron Bird, R.: The Molecular Theory of Gases and Liquids. Wiley, New York (1954)Google Scholar
  29. 29.
    Méndez, A.R., García-Perciante, A.L., Escobar, E.: Thermal conductivity for a bidimensional dilute gas within the Chapman–Enskog approximation. arXiv:1501.01228v2 (2015)
  30. 30.
    Chacón-Acosta, G.: Equilibrium and non-equilibrium properties of a relativistic gas at the transition temperature. In: AIP Conference Proceedings, vol. 1786, 070016 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. L. García-Perciante
    • 1
  • A. R. Méndez
    • 1
  • E. Escobar-Aguilar
    • 1
    • 2
  1. 1.Departamento de Matemáticas Aplicadas y SistemasUniversidad Autónoma Metropolitana - CuajimaplaCiudad de MéxicoMéxico
  2. 2.Departamento de FísicaUniversidad Autónoma Metropolitana - IztapalapaCiudad de MéxicoMéxico

Personalised recommendations