Journal of Statistical Physics

, Volume 167, Issue 3–4, pp 777–791 | Cite as

Population Genetics with Fluctuating Population Sizes

  • Thiparat ChotibutEmail author
  • David R. Nelson


Standard neutral population genetics theory with a strictly fixed population size has important limitations. An alternative model that allows independently fluctuating population sizes and reproduces the standard neutral evolution is reviewed. We then study a situation such that the competing species are neutral at the equilibrium population size but population size fluctuations nevertheless favor fixation of one species over the other. In this case, a separation of timescales emerges naturally and allows adiabatic elimination of a fast population size variable to deduce the fluctuation-induced selection dynamics near the equilibrium population size. The results highlight the incompleteness of the standard population genetics with a strictly fixed population size.


Population genetics Fluctuating population sizes Dynamical system Stochastic process 



This work was supported in part by the National Science Foundation (NSF) through Grants Nos. DMR-1608501 and DMR-1306367 and by the Harvard Materials Research Science and Engineering Laboratory, through MRSEC Grant No. DMR-1420570. Portions of this research were conducted during a stay at the Center for Models of Life at the Niels Bohr Institute, the University of Copenhagen. Computations were performed on the Odyssey cluster supported by the FAS Division of Science Research Computing Group at Harvard University.


  1. 1.
    Gillespie, J.H.: Population Genetics: A Concise Guide. JHU Press, Baltimore (2010)Google Scholar
  2. 2.
    Ewens, W.J.: Mathematical Population Genetics: I. Theoretical Introduction. Springer, New York (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Elena, S.F., Lenski, R.E.: Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4(6), 457 (2003)CrossRefGoogle Scholar
  4. 4.
    Desai, M.M.: Statistical questions in experimental evolution. J. Stat. Mech. Theory Exp. 2013(01), P01003 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Barrick, J.E., Lenski, R.E.: Genome dynamics during experimental evolution. Nat. Rev. Genet. 14(12), 827 (2013)CrossRefGoogle Scholar
  6. 6.
    Dai, L., Vorselen, D., Korolev, K.S., Gore, J.: Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336(6085), 1175 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Sanchez, A., Gore, J.: Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLoS Biol. 11(4), e1001547 (2013)CrossRefGoogle Scholar
  8. 8.
    Griffin, A.S., West, S.A., Buckling, A.: Cooperation and competition in pathogenic bacteria. Nature 430(7003), 1024 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press, Cambridge (2006)zbMATHGoogle Scholar
  10. 10.
    Hartl, D.L., Clark, A.G., et al.: Principles of Population Genetics, vol. 116. Sinauer Associates, Sunderland (1997)Google Scholar
  11. 11.
    Otto, S.P., Whitlock, M.C.: The probability of fixation in populations of changing size. Genetics 146(2), 723 (1997)Google Scholar
  12. 12.
    Wahl, L.M., Gerrish, P.J., Saika-Voivod, I.: Evaluating the impact of population bottlenecks in experimental evolution. Genetics 162(2), 961 (2002)Google Scholar
  13. 13.
    Wahl, L.M., Gerrish, P.J.: The probability that beneficial mutations are lost in populations with periodic bottlenecks. Evolution 55(12), 2606 (2001)CrossRefGoogle Scholar
  14. 14.
    Patwa, Z., Wahl, L.: The fixation probability of beneficial mutations. J. R. Soc. Interface 5(28), 1279 (2008)CrossRefGoogle Scholar
  15. 15.
    Parsons, T.L., Quince, C., Plotkin, J.B.: Absorption and fixation times for neutral and quasi-neutral populations with density dependence. Theor. Popul. Biol. 74(4), 302 (2008)zbMATHCrossRefGoogle Scholar
  16. 16.
    Parsons, T.L., Quince, C.: Fixation in haploid populations exhibiting density dependence II: The quasi-neutral case. Theor. Popul. Biol. 72(4), 468 (2007)zbMATHCrossRefGoogle Scholar
  17. 17.
    Lin, Y.T., Kim, H., Doering, C.R.: Features of fast living: on the weak selection for longevity in degenerate birth-death processes. J. Stat. Phys. 148(4), 647 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kogan, O., Khasin, M., Meerson, B., Schneider, D., Myers, C.R.: Two-strain competition in quasineutral stochastic disease dynamics. Phys. Rev. E 90(4), 042149 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Parsons, T.L., Quince, C., Plotkin, J.B.: Some consequences of demographic stochasticity in population genetics. Genetics 185(4), 1345 (2010)CrossRefGoogle Scholar
  20. 20.
    Fisher, R.A.: The Genetical Theory of Natural Selection: A Complete, Variorum edn. Oxford University Press, Oxford (1930)zbMATHGoogle Scholar
  21. 21.
    Wright, S.: Evolution in mendelian populations. Genetics 16(2), 97 (1931)Google Scholar
  22. 22.
    Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  23. 23.
    Moran, P.A.P.: Random processes in genetics. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 54, pp. 60–71. Cambridge University Press, Cambridge (1958)Google Scholar
  24. 24.
    Moran, P.A.P., et al.: The Statistical Processes of Evolutionary Theory. Oxford University Press, Oxford (1962)zbMATHGoogle Scholar
  25. 25.
    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992)zbMATHGoogle Scholar
  26. 26.
    Risken, H.: Fokker-Planck Equation. Springer, Berlin (1984)zbMATHCrossRefGoogle Scholar
  27. 27.
    Korolev, K., Avlund, M., Hallatschek, O., Nelson, D.R.: Genetic demixing and evolution in linear stepping stone models. Rev. Mod. Phys. 82(2), 1691 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Gardiner, C.: Handbook of Stochastic Processes. Springer, Berlin (1985)Google Scholar
  29. 29.
    Chotibut, T., Nelson, D.R.: Evolutionary dynamics with fluctuating population sizes and strong mutualism. Phys. Rev. E 92(2), 022718 (2015)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Pigolotti, S., Benzi, R., Perlekar, P., Jensen, M.H., Toschi, F., Nelson, D.R.: Growth, competition and cooperation in spatial population genetics. Theor. Popul. Biol. 84, 72 (2013)zbMATHCrossRefGoogle Scholar
  31. 31.
    Constable, G.W.A., McKane, A.J.: Models of genetic drift as limiting forms of the Lotka-Volterra competition model. Phys. Rev. Lett. 114, 3 (2015)CrossRefGoogle Scholar
  32. 32.
    Constable, G.W.A., Rogers, T., McKane, A.J., Tarnita, C.E.: Demographic noise can reverse the direction of deterministic selection. Proc. Natl. Acad. Sci. 2016, 03693 (2016)Google Scholar
  33. 33.
    Parsons, T.L., Rogers, T.: Dimension reduction via timescale separation in stochastic dynamical systems. arXiv:1510.07031 (2015)
  34. 34.
    Hallatschek, O.: Noise driven evolutionary waves. PLoS Comput. Biol. 7(3), e1002005 (2011)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Houchmandzadeh, B., Vallade, M.: Selection for altruism through random drift in variable size populations. BMC Evol. Biol. 12, 61 (2012)CrossRefGoogle Scholar
  36. 36.
    Houchmandzadeh, B.: Fluctuation driven fixation of cooperative behavior. Biosystems 127, 60–66 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations