Journal of Statistical Physics

, Volume 167, Issue 3–4, pp 559–574 | Cite as

Philosophical Implications of Kadanoff’s Work on the Renormalization Group

Article

Abstract

This paper investigates the consequences for our understanding of physical theories as a result of the development of the renormalization group. Kadanoff’s assessment of these consequences is discussed. What he called the “extended singularity theorem” (that phase transitons only can occur in infinite systems) poses serious difficulties for philosophical interpretation of theories. Several responses are discussed. The resolution demands a philosophical rethinking of the role of mathematics in physical theorizing.

Keywords

Kadanoff Renormalization group Block transformations Ising model Minimal models Universality Explanation 

Notes

Acknowledgments

Thanks to Michael Miller for helpful comments.

References

  1. 1.
    Batterman, R.W.: The Devil in the Details: Asymptotic Reasoning in Explanation, Reduction, and Emergence. Oxford Studies in Philosophy of Science. Oxford University Press (2002)Google Scholar
  2. 2.
    Batterman, R.W.: Critical phenomena and breaking drops: Infinite idealizations in physics. Stud. Hist. Philos. Mod. Phys. 36, 225–244 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Batterman, R.W.: Idealization and modeling. Synthese 169, 427–446 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Batterman, R.W.: Reduction and renormalization. In: Ernst, G., Hüttemann, A. (eds.) Time, Chance, and Reduction: Philosophical Aspects of Statistical Mechanics, chap. 9, pp. 159–179. Cambridge University Press (2010)Google Scholar
  5. 5.
    Batterman, R.W., Rice, C.C.: Minimal model explanations. Philos. Sci. 81(3), 349–376 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brush, S.G.: Statistical Physics and the Atomic Theory of Matter, From Boyle and Newton to Landau and Onsager. Princeton Series in Physics. Princeton University Press, Princeton (1983)Google Scholar
  7. 7.
    Butterfield, J.: Less is different: emergence and reduction reconciled. Found. Phys. 41(6), 1065–1135 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Butterfield, J., Bouatta, N.: Renormalization for philosophers. In: Bigaj, T., Wüthrich, C. (eds.) Metaphysics in Contemporary Physics, vol. 104, pp. 437–485. Poznan Studies in Philosophy of Science (2015)Google Scholar
  9. 9.
    Callender, C.: Taking thermodynamics too seriously. Stud. Hist. Philos. Mod. Phys. 32(4), 533–539 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Fraser, J.D.: Spontaneous symmetry breaking in finite systems. Philos. Sci. 83, 585–605 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Number 85 in Frontiers in Physics. Addison-Wesley, Reading (1992)Google Scholar
  12. 12.
    Goldenfeld, N., Kadanoff, L.P.: Simple lessons from complexity. Science 284, 87–89 (1999)Google Scholar
  13. 13.
    Guggenheim, E.A.: The principle of corresponding states. J. Chem. Phys. 13(7), 253–261 (1945)ADSCrossRefGoogle Scholar
  14. 14.
    Kadanoff, L.P.: Critical behavior. Universality and scaling. In: Green, M.S. (ed.) Proceedings of the International School of Physics “Enrico Fermi” Course LI, volume Course LI, pp. 100–117, New York. Italian Physical Society, Academic Press (1971)Google Scholar
  15. 15.
    Kadanoff, L.P.: Statistical Physics: Statics, Dynamics, and Renormalization. World Scientific, Singapore (2000)CrossRefMATHGoogle Scholar
  16. 16.
    Kadanoff, L.P.: More is the same; phase transitions and mean field theories. J. Stat. Phys. 137, 777–797 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kadanoff, L.P.: Theories of matter: infinities and renormalization. In: Batterman, R.W. (ed.) The Oxford Handbook of Philosophy of Physics, chap. 4, pp. 141–188. Oxford University Press (2013)Google Scholar
  18. 18.
    Koralov, L., Sinai, Y.G. (2007) Theory of Probability and Random Processes, 2nd edn. Springer (2007)Google Scholar
  19. 19.
    Kuhn, T.S.: The Structure of Scientific Revolutions, 2nd edn. The Universtity of Chicago Press, Chicago (1970)Google Scholar
  20. 20.
    Morgan, M.S., Morrison, M. (eds.). Models as Mediators: Perspectives on Natural and Social Science. Cambridge University Press (1999)Google Scholar
  21. 21.
    Norton, J.D.: Approximation and idealization: why the difference matters. Philos. Sci. 79(2), 207–232 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sklar, L.: Physics and Chance: Philosophical Issues in the Foundations of Statstical Mechanics. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  23. 23.
    Truesdell, C.: The ergodic problem in classical statistical mechanics. In: Six Lectures on Modern Natural Philosophy, chap. 5, pp. 65–82. Springer, New York (1966)Google Scholar
  24. 24.
    Truesdell, C.: Method and taste in natural philosophy. In: Six Lectures on Modern Natural Philosophy, chap. 6, pp. 83–108. Springer (1966)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of PittsburghPittsburghUSA

Personalised recommendations