Advertisement

Journal of Statistical Physics

, Volume 165, Issue 4, pp 681–692 | Cite as

A Method for Identification of Critical States of Open Stochastic Dynamical Systems Based on the Analysis of Acceleration

  • Denis M. FilatovEmail author
Article

Abstract

A new method of fractal analysis of nonstationary time series for recognition of critical (precatastrophic) and noncritical (quiet) modes of behaviour of open stochastic dynamical systems is developed. The method is a modification of the conventional detrended fluctuation analysis (DFA) technique. Unlike the classical DFA that originates in the R/S analysis and implies investigation of the time series by studying the properties of a mixture of velocities and accelerations, the new method focuses on the study of accelerations only. Because at the most basic level the equations of motion of stochastic dynamical systems are expressions for the acceleration, the suggested method results to be more suitable for recognition of critical and noncritical states. Using both model and real data, we demonstrate superiority of the newly developed method over the conventional DFA and provide a detailed discussion on the topic.

Keywords

Open stochastic dynamical systems Critical states Precursors of catastrophes Fractal analysis Measure of chaoticity 

Notes

Acknowledgments

The author is grateful to the anonymous referees for their comments that have allowed to clarify and substantially improve the final version of the paper.

References

  1. 1.
    Ashkenazy, Y., Ivanov, PCh., Havlin, S., Peng, C.-K., Goldberger, A.L., Stanley, H.E.: Magnitude and sign correlations in heartbeat fluctuations. Phys. Rev. Lett. 86, 1900–1903 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Carbone, A., Castelli, G., Stanley, H.E.: Time-dependent Hurst exponent in financial time series. Physica A 344, 267–271 (2004)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Costa, M.D, Goldberger, A.L., Peng, C.-K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 021906-1–021906-18 (2005). doi: 10.1103/PhysRevE.71.021906
  4. 4.
    Feder, J.: Fractals. Plenum Press, New York (1988)CrossRefzbMATHGoogle Scholar
  5. 5.
    Filatov, D.M., Lyubushin, A.A.: Assessment of seismic hazard of the Japanese islands based on fractal analysis of GPS time series. Izv. Phys. Solid Earth (in press)Google Scholar
  6. 6.
    Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., Ivanov, PCh., Peng, C.-K., Stanley, H.E.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl Acad. Sci. U.S.A. 99, 2466–2472 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Haken, H.: Information and Self-Organization: A Macroscopic Approach to Complex Systems. Springer, Berlin (2006). doi: 10.1007/3-540-33023-2 zbMATHGoogle Scholar
  8. 8.
    Hurst, H.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–799 (1951)Google Scholar
  9. 9.
    Ivanov, PCh., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Stanley, H.E., Struzik, Z.R.: From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos 11, 641–652 (2001)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Kantelhardt, J.W.: Fractal and Multifractal Time Series. arXiv:0804.0747 (2008)
  11. 11.
    Klimontovich, YuL: Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open Systems. Springer, Berlin (1991). doi: 10.1007/978-94-011-3426-2 CrossRefzbMATHGoogle Scholar
  12. 12.
    Klimontovic, YuL: Statistical Theory of Open Systems: A Unified Approach to Kinetic Description of Processes in Active Systems. Springer, Berlin (1995). doi: 10.1007/978-94-011-0175-2 CrossRefGoogle Scholar
  13. 13.
    Leistedt, S.J.-J., Linkowski, P., Lanquart, J.-P., Mietus, J.E., Davis, R.B., Goldberger, A.L., Costa, M.D.: Decreased neuroautonomic complexity in men during an acute major depressive episode: analysis of heart rate dynamics. Transl. Psychiatry 1, e27 (2011). doi: 10.1038/tp.2011.23 CrossRefGoogle Scholar
  14. 14.
    Lipsitz, L.A., Goldberger, A.L.: Loss of ‘complexity’ and aging: potential applications of fractals and chaos theory to senescence. J. Am. Med. Assoc. 287, 1806–1809 (1992). doi: 10.1001/jama.1992.03480130122036 CrossRefGoogle Scholar
  15. 15.
    Lyubushin, A.A.: Multifractal parameters of low-frequency microseisms. In: de Rubeis, V., Czechowski, Z., Teisseyre, R. (eds.) Geoplanet: Earth and Planetary Sciences, Synchronization and Triggering: From Fracture to Earthquake Processes, pp. 253–272. Springer, Berlin (2010)CrossRefGoogle Scholar
  16. 16.
    Lyubushin, A.A., Yakovlev, P.V.: Properties of GPS noise at Japan islands before and after Tohoku mega earthquake. SpringerPlus 3, 364–381 (2014). doi: 10.1186/2193-1801-3-364 CrossRefGoogle Scholar
  17. 17.
    Mandelbrot, B.B.: Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Oświȩcimka, P., Kwapień, J., Drożdż, S., Rak, R.: Investigating multifractality of stock market fluctuations using wavelet and detrending fluctuation methods. Acta Phys. Polon. B 36, 2447–2457 (2005)ADSGoogle Scholar
  19. 19.
    Peng, C.-K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Mantegna, R.N., Simons, M., Stanley, H.E.: Statistical properties of DNA sequences. Physica A 221, 180–192 (1995)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    Peng, C.-K., Hausdorff, J.M., Mietus, J.E., Havlin, S., Stanley, H.E., Goldberger, A.L.: Fractals in physiological control: from heart beat to gait. In: Shlesinger, M.F., Zaslavsky, G.M., Frisch, U. (eds.) Lévy Flights and Related Topics in Physics, Proceedings of the International Workshop held at Nice, France, 27–30 June 1994. Lecture Notes in Physics, vol. 450, pp. 313–330. Springer, Berlin (1995)Google Scholar
  21. 21.
    Peng, C.-K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    PhysioBank Archive, a resource supported by the National Institute of General Medical Sciences (NIGMS) and National Institute of Biomedical Imaging and Bioengineering (NIBIB), the USA. https://physionet.org/physiobank/database/
  23. 23.
    Sornette, D.: Why Stock Markets Crash: Critical Events in Complex Financial Systems. Princeton University Press, Princeton (2003)zbMATHGoogle Scholar
  24. 24.
    Voit, J.: The Statistical Mechanics of Financial Markets. Springer, Berlin (2005)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Sceptica Scientific Ltd.StockportUK

Personalised recommendations