Journal of Statistical Physics

, Volume 165, Issue 3, pp 471–506 | Cite as

Critical Crossover Functions for Simple Fluids: Towards the Crossover Modelling Uniqueness

  • Yves Garrabos
  • Carole Lecoutre
  • Samuel Marre
  • Bernard LeNeindre
  • Inseob Hahn
Article

Abstract

Based on a single non-universal temperature scaling factor present in a simple fluid case, a detailed analysis of non-universal parameters involved in different critical-to-classical crossover models is given. For the infinite limit of the cutoff wave number, a set of three scaling-parameters is defined for each model such that it shows all the shapes of the theoretical crossover functions overlap on the mean crossover function shapes close to the non-trivial fixed point. The analysis of corresponding links between their fluid-dependent parameters opens a route to define a parametric model of crossover equation-of-state, closely satisfying the universal features calculated from the Ising-like limit in the massive renormalization scheme.

Keywords

Critical crossover functions Crossover models Crossover Equation of State Critical crossover uniqueness Xenon 

References

  1. 1.
    Garrabos, Y., Lecoutre, C., Marre, S., LeNeindre, B.: Critical crossover functions for simple fluids: non-analytical scaling determination of the Ising-like crossover parameter. J. Stat. Phys. 164, 575–615 (2016)Google Scholar
  2. 2.
    Bagnuls, C., Bervillier, C.: Classical-to-critical crossovers from field theory. Phys. Rev. E 65, 066132-12p (2002). And references thereinGoogle Scholar
  3. 3.
    Garrabos, Y., Bervillier, C.: Mean crossover functions for uniaxial 3D ising-like systems. Phys. Rev. E 74, 021113–16p (2006)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena, 4th edn. Oxford University Press, Oxford (2002)Google Scholar
  5. 5.
    Pelissetto, A., Vicari, E.: Critical phenomena and renormalization group theory. Phys. Rep. 368, 549–727 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Wilson, K.G., Kogut, J.: The renormalization group and the \(\varepsilon \) expansion. Phys. Rep. 12C, 75–200 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    Privman, V., Hohenberg, P.C., Aharony, A.: Universal critical point amplitude relations. In: Domb, C., Lebowitz, J.B. (eds.) Phase Transitions and Critical Phenomena, vol. 14, pp. 1–134. Academic Press, New York (1991)Google Scholar
  8. 8.
    Guida, R., Zinn-Justin, J.: Critical exponents of the N-vector model. J. Phys. A 31, 8103–8122 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Garrabos, Y., Lecoutre-Chabot, C., Palencia, F., LeNeindre, B., Erkey, C.J.: Master crossover functions for one-component fluids. Phys. Rev. E. 77, 021116–26p (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Garrabos, Y.: Contribution à l’étude des propriétés d’état des fluides purs dans leur région critique, Thèse de Doctorat d’état, Université Paris 6 (1982)Google Scholar
  11. 11.
    Garrabos, Y.: Facteurs d’échelle phénoménologiques pour la transition critique liquide-gaz des fluides purs. J. Phys. 46, 281 (1985). For an english version see also: Phenomenological Scale Factors for the Liquid-Vapor Critical Transition of Pure Fluids, cond-mat/0512408CrossRefGoogle Scholar
  12. 12.
    Garrabos, Y.: Scaling behaviour of the fluid subclass near the liquid-gas critical point. J. Phys. 47, 197–206 (1986)CrossRefGoogle Scholar
  13. 13.
    Garrabos, Y., Lecoutre, C., Marre, S., Guillaument, R., Beysens, D., Hahn, I.: Crossover equation of state models applied to the critical behavior of xenon. J. Stat. Phys. 158, 1379–1412 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Güttinger, H., Cannell, D.S.: Corrections to scaling in the susceptibility of xenon. Phys. Rev. A 24, 3188–3201 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    Närger, U., Balzarini, D.A.: Coexistence-curve diameter and critical density of xenon. Phys. Rev. B 42, 6651–6657 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    Bagnuls, C., Bervillier, C.: Nonasymptotic critical behaviour from field theory for Ising like systems in the homogeneous phase: theoretical framework. J. Phys. Lett. 45, L95–L100 (1984)CrossRefGoogle Scholar
  17. 17.
    Bagnuls, C., Bervillier, C.: Classical-to-critical crossovers from field theory. Phys. Rev. B 32, 7209 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    Bagnuls, C., Bervillier, C., Garrabos, Y.: Experimental data analysis on xenon above the critical temperature from nonlinear renormalization group. J. Phys. Lett. 45, L127–L132 (1984)CrossRefGoogle Scholar
  19. 19.
    Schloms, R., Dohm, V.: Minimal renormalization without \(\varepsilon \)-expansion: critical behavior in three dimensions. Nucl. Phys. B 328, 639–663 (1989)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Krause, H.J., Schloms, R., Dohm, V.: Minimal renormalization without \(\varepsilon \)-expansion: amplitude functions in three dimensions. Z. Phys. B 79, 287–293 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    Hahn, I., Zhong, F., Barmatz, M., Haussmann, R., Rudnick, J.: Crossover behavior in the isothermal susceptibility near the 3He critical point. Phys. Rev. E 63, 055104(R)–4p (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Zhong, F., Barmatz, M., Hahn, I.: Application of minimal substraction renormalization to crossover behavior near the 3He liquid-vapor critical point. Phys. Rev. E 67, 021106–20p (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Chen, Z.Y., Albright, P.C., Sengers, J.V.: Crossover from singular critical to regular classical thermodynamic behavior of fluids. Phys. Rev. A 41, 3161–3177 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    Chen, Z.Y., Abbaci, A., Tang, S., Sengers, J.V.: Global thermodynamic behavior of fluids in the critical region. Phys. Rev. A 42, 4470–4484 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    Tang, S., Sengers, J.V., Chen, Z.Y.: Nonasymptitic critical thermodynamical behavior of fluids. Physica A 179, 344–377 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    Anisimov, M.A., Povodyrev, A.A., Kulikov, V.D., Sengers, J.V.: Nature of crossover between ising-like and mean-field critical behavior in fluids and fluid mixtures. Phys. Rev. Lett. 75, 3146–3149 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    Agayan, V.A., Anisimov, M.A., Sengers, J.V.: A crossover parametric equation of state for three-dimensional Ising universality class systems, In: Proceedings of 14th Symposium on Thermophysical Properties, Boulder, Colorado, June 25–30 (2000)Google Scholar
  28. 28.
    Agayan, V.A., Anisimov, M.A., Sengers, J.V.: Crossover parametric equation of state for Ising-like systems. Phys. Rev. E 64, 026125 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    Luijten, E., Binder, K.: Nature of crossover from classical to Ising-like critical behavior, Phys. Rev. E 58, R4060-R3261 (1998); Erratum, Phys. Rev. E 59, 7254(E) (1999)Google Scholar
  30. 30.
    Luijten, E.: Critical properties of the three-dimensional equivalent-neighbor model and crossover scaling in finite systems. Phys. Rev. E 59, 4997–5008 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Luijten, E., Meyer, H.: Crossover behavior in 3He and Xe near their liquid-vapor critical point. Phys. Rev. E 62, 3257–3261 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    Ginzburg, V.L.: Phase transitions of the second kind and the microscopic theory of ferroelectricity, Fiz. Tverd. Tela 2, 2031–2043 (1960) [Sov. Phys. Solid State 2, 1824–1836 (1961)Google Scholar
  33. 33.
    Pelissetto, A., Rossi, P., Vicari, E.: Crossover scaling from classical to nonclassical critical behavior. Phys. Rev. E 58, 7146–7150 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Wegner, F.J.: Corrections to scaling laws. Phys Rev. B 5, 4529–4536 (1972)ADSCrossRefGoogle Scholar
  35. 35.
    Nicoll, J.F., Bhattacharjee, J.K.: Crossover functions by renormalization-group matching: \({{\rm O}{(\varepsilon ^2)}}\) results. Phys. Rev. B 23, 389–401 (1981)ADSCrossRefGoogle Scholar
  36. 36.
    Nicoll, J.F., Albright, P.C.: Crossover functions by renormalization-group matching: three-loop results. Phys. Rev. B 31, 4576–4589 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    Nicoll, J.F., Albright, P.C.: Background fluctuations and Wegner corrections. Phys. Rev. B 34, 1991–1996 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    Albright, P.C., Sengers, J.V., Nicoll, J.F., Ley-Koo, M.: A crossover description for the thermodynamic properties of fluids in the critical region. Int. J. Thermophys. 7, 75–85 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    Albright, P.C., Chen, Z.Y., Sengers, J.V.: Crossover from singular to regular thermodynamic behavior of fluids in the critical region. Phys. Rev. B 36, 877–880 (1987)ADSCrossRefGoogle Scholar
  40. 40.
    Belyakov, M.Y., Kiselev, S.B.: Crossover behavior of the susceptibility and the specific heat near a second-order phase transition. Physica A 190, 75–94 (1992)ADSCrossRefGoogle Scholar
  41. 41.
    Anisimov, M.A., Kiselev, S.B., Sengers, J.V., Tang, S.: Crossover approach to global critical phenomena in fluids. Physica A 188, 487–525 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    Garrabos, Y., Le Neindre, B., Wunenburger, R., Lecoutre-Chabot, C., Beysens, D.: Universal scaling form of the equation of state of a critical pure fluid. In: Proceedings of 14th Symposium on Thermophysical Properties, Boulder, Colorado, June 25–30 (2000)Google Scholar
  43. 43.
    Garrabos, Y., Le Neindre, B., Wunenburger, R., Lecoutre-Chabot, C., Beysens, D.: Universal scaling form of the equation of state of a critical pure fluid. Int. J. Thermophys. 23, 997–1011 (2002)CrossRefGoogle Scholar
  44. 44.
    Zhong, F., Barmatz, M.: Comparison of theoretical models of crossover behavior near the 3He liquid-vapor critical point. Phys. Rev. E 70, 066105–9p (2004)ADSCrossRefGoogle Scholar
  45. 45.
    Kim, Y.C., Anisimov, M.A., Sengers, J.V., Luijten, E.: Crossover critical behavior in the three-dimensional Ising model. J. Stat. Phys. 110, 591–609 (2003)CrossRefMATHGoogle Scholar
  46. 46.
    Michels, A., Wassenaar, T., Louwerse, P.: Isotherms of xenon at temperatures between \({{0}^{\circ }}\)C and \({{150}^{\circ }}\)C and at densities up to 515 Amagats (pressures up to 2800 atmospheres). Physica 20, 99–106 (1954)ADSCrossRefGoogle Scholar
  47. 47.
    Lecoutre, C., Guillaument, R., Marre, S., Garrabos, Y., Beysens, D., Hahn, I.: Weightless experiments to probe universality of fluid critical behavior. Phys. Rev. E 91, 060101(R)–5p (2015)ADSCrossRefMATHGoogle Scholar
  48. 48.
    Edwards, C., Lipa, J.A., Buckingham, M.J.: Specific heat of xenon near the critical point. Phys. Rev. Lett. 25, 496–499 (1968)ADSCrossRefGoogle Scholar
  49. 49.
    Wilcox, L.R., Balzarini, D.: Interferometric determination of near-critical isotherms of xenon in the earth’s field. J. Chem. Phys. 48, 753–763 (1968)ADSCrossRefGoogle Scholar
  50. 50.
    Estler, W.T., Hocken, R., Charlton, T., Wilcox, L.R.: Coexistence curve, compressibility, and the equation of state of xenon near the critical point. Phys. Rev. A 12, 2118–2136 (1975)ADSCrossRefGoogle Scholar
  51. 51.
    Hocken, R.J., Moldover, M.R.: Ising critical exponents in real fluids: an experiment. Phys. Rev. Lett. 37, 29–32 (1976)ADSCrossRefGoogle Scholar
  52. 52.
    Sengers, J.V., Moldover, M.R.: Two-scale-factor universality near the critical point of fluids. Phys. Lett. 66A, 44–46 (1978)ADSCrossRefGoogle Scholar
  53. 53.
    Fisher, M.E., Zinn, S.-Y., Hupton, P.J.: Trigonometric models for scaling behavior near criticality. Phys. Rev. B 59, 14533–14545 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    Wilcox, L.R., Estler, W.T.: On the phenomenology of phase transitions. J. Phys. Colloq. 32, C5a-175 (1974)Google Scholar

Copyright information

© European Union  2016

Authors and Affiliations

  • Yves Garrabos
    • 1
    • 2
  • Carole Lecoutre
    • 1
    • 2
  • Samuel Marre
    • 1
    • 2
  • Bernard LeNeindre
    • 3
    • 4
  • Inseob Hahn
    • 5
  1. 1.Institut de Chimie de la Matière Condensée de Bordeaux - UPR 9048CNRSPessac CedexFrance
  2. 2.ICMCB, UPR 9048Université BordeauxPessac CedexFrance
  3. 3.Laboratoire des Sciences des Procédés et des Matériaux - UPR 3407CNRSVilletaneuseFrance
  4. 4.Université Paris 13 - Sorbonne Paris CitéVilletaneuseFrance
  5. 5.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations