Advertisement

Journal of Statistical Physics

, Volume 165, Issue 1, pp 115–125 | Cite as

Coexistence of Shocks and Rarefaction Fans: Complex Phase Diagram of a Simple Hyperbolic Particle System

  • Márton Balázs
  • Attila László Nagy
  • Bálint Tóth
  • István Tóth
Article

Abstract

This paper investigates the non-equilibrium hydrodynamic behavior of a simple totally asymmetric interacting particle system of particles, antiparticles and holes on \(\mathbb {Z}\). Rigorous hydrodynamic results apply to our model with a hydrodynamic flux that is exactly calculated and shown to change convexity in some region of the model parameters. We then characterize the entropy solutions of the hydrodynamic equation with step initial condition in this scenario which include various mixtures of rarefaction fans and shock waves. We highlight how the phase diagram of the model changes by varying the model parameters.

Keywords

Asymmetric particle system Hydrodynamic equation Non-equilibrium behavior Non-convex flux Riemann problem Shock Rarefaction fan 

Notes

Acknowledgments

Márton Balázs and Bálint Tóth acknowledge support from the Grants OTKA K100473 and OTKA K109684. B. T. also thanks support from the Leverhulme International Network Grant “Laplacians, Random Walks and Quantum Spin Systems”. We are indebted to an anonymous referee whose detailed and helpful comments greatly improved the exposition of the paper.

References

  1. 1.
    Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E.: Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab. 34(4), 1339–1369 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E.: Strong hydrodynamic limit for attractive particle systems on \(\mathbb{Z}\). Electron. J. Probab. 15(1), 1–43 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13(50), 1380–1418 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chowdhury, D., Wang, J.-S.: Flow properties of driven-diffusive lattice gases: theory and computer simulation. Pyhs. Rev. E 65(4), 046126 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Cocozza-Thivent, C.: Processus des misanthropes. Z. Wahrsch. Verw. Gebiete 70(4), 509–523 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fossati, M., Quartapelle, L.: The Riemann problem for hyperbolic equations under a nonconvex flux with two inflection points. 18ème Seminaire on la Mecanique des Fluides Numerique, Institut Henri Poincaré, France, January 2006. arXiv:1402.5906 (2006)
  7. 7.
    Hager, J.S., Krug, J., Popkov, V., Shütz, G.M.: Minimal current phase and universal boundary layers in driven diffusive systems. Phys. Rev. E 63(5), 056110 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Hayes, B.T., LeFloch, P.G.: Non-classical shocks and kinetic relations: scalar conservation laws. Arch. Rational Mech. Anal. 139(1), 1–56 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Holden, H., Risebro, N.H.: Front Tracking for Hyperbolic Conservation Laws. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Katz, S., Lebowitz, J.L., Spohn, H.: Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors. J. Stat. Phys. 34(3), 497–537 (1984)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Landim, C.: Conservation of local equilibrium for attractive particle systems on \(\mathbb{Z}^d\). Ann. Probab. 21(4), 1782–1808 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  14. 14.
    Popkov, V., Rákos, A., Willmann, R.D., Kolomeisky, A.B., Schütz, G.M.: Localization of shocks in driven diffusive systems without particle number conservation. Phys. Rev. E 67(6), 066117 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Popkov, V., Schütz, G.M.: Steady-state selection in driven diffusive systems with open boundaries. Europhys. Lett. 48(3), 257 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on \(\mathbb{Z}^d\). Commun. Math. Phys. 140(3), 417–448 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Smoller, J.: Shock Waves and Reaction–Diffusion Equations. Springer, New York (1983)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tian, B., Jiang, R., Ding, Z.-J., Hu, M.-B., Wu, Q.-S.: Phase diagrams of the Katz–Lebowitz–Spohn process on lattices with a junction. Phys. Rev. E 87(6), 062124 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Tóth, B., Valkó, B.: Between equilibrium fluctuations and Eulerian scaling: perturbation of equilibrium for a class of deposition models. J. Stat. Phys. 109(1), 177–205 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tóth, I.: Hydrodynamic behavior of an interacting particle system (in Hungarian). Master’s Thesis, Budapest University of Technology and Economics, Department of Stochastics (2005)Google Scholar
  21. 21.
    Tóth, I.: Simulation of a totally asymmetric attractive interacting particle system. http://github.com/tothi/riemann-nonconvex/ (2016)

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Márton Balázs
    • 1
  • Attila László Nagy
    • 2
  • Bálint Tóth
    • 1
    • 3
  • István Tóth
    • 2
  1. 1.School of MathematicsUniversity of BristolBristolUK
  2. 2.Institute of MathematicsBudapest University of Technology and EconomicsBudapestHungary
  3. 3.MTA-BME Stochastics Research Group and Rényi Institute BudapestBudapestHungary

Personalised recommendations