Journal of Statistical Physics

, Volume 164, Issue 5, pp 1122–1156 | Cite as

Open Quantum Random Walks: Ergodicity, Hitting Times, Gambler’s Ruin and Potential Theory



In this work we study certain aspects of open quantum random walks (OQRWs), a class of quantum channels described by Attal et al. (J Stat Phys 147: 832–852, 2012). As a first objective we consider processes which are nonhomogeneous in time, i.e., at each time step, a possibly distinct evolution kernel. Inspired by a spectral technique described by Saloff-Coste and Zúñiga (Stoch Proc Appl 117: 961–979, 2007), we define a notion of ergodicity for finite nonhomogeneous quantum Markov chains and describe a criterion for ergodicity of such objects in terms of singular values. As a second objective, and based on a quantum trajectory approach, we study a notion of hitting time for OQRWs and we see that many constructions are variations of well-known classical probability results, with the density matrix degree of freedom on each site giving rise to systems which are seen to be nonclassical. In this way we are able to examine open quantum versions of the gambler’s ruin, birth-and-death chain and a basic theorem on potential theory.



The authors are grateful to an anonymous referee for several useful suggestions that led to marked improvements of the paper. C.F.L. is partially supported by a CAPES/PROAP grant to the Graduate Program in Mathematics—PPGMat/UFRGS. R.R.S. is partially supported by FAPERGS (proc. 002063-2551/13-0). The authors would like to thank C. Liu, T. Machida, S. E. Venegas-Andraca, N. Petulante, F. Petruccione and F. A. Grünbaum for stimulating discussions on this line of research.


  1. 1.
    Accardi, L., Koroliuk, D.: Quantum Markov chains: the recurrence problem. Quantum Prob. Relat. Top. VII, 6373 (1991)MathSciNetMATHGoogle Scholar
  2. 2.
    Accardi, L., Koroliuk, D.: Stopping times for quantum Markov chains. J. Theor. Probab. 5(3), 521–535 (1992)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alicki, R., Fannes, M.: Quantum Dynamical Systems. Oxford University Press, Oxford (2000)MATHGoogle Scholar
  4. 4.
    Attal, S., Petruccione, F., Sabot, C., Sinayskiy, I.: Open quantum random walks. J. Stat. Phys. 147, 832–852 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Attal, S., Guillotin-Plantard, N., Sabot, C.: Central limit theorems for open quantum random walks and quantum measurement records. Ann. Henri Poincaré 16, 15–43 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baraviera, A., Lardizabal, C.F., Lopes, A.O., Terra Cunha, M.: Quantum stochastic processes, quantum iterated function systems and entropy. São Paulo Journ. Math. Sci. 5(1), 51–84 (2011)MathSciNetMATHGoogle Scholar
  7. 7.
    Benatti, F.: Dynamics, Information and Complexity in Quantum Systems. Springer, Berlin (2009)MATHGoogle Scholar
  8. 8.
    Biane, P., Bouten, L., Cipriani, F., Konno, N., Privault, N., Xu, Q.: Quantum Potential Theory. Lecture Notes in Mathematics, vol. 1954. Springer, Berlin (2008)Google Scholar
  9. 9.
    Bourgain, J., Grünbaum, F.A., Velázquez, L., Wilkening, J.: Quantum recurrence of a subspace and operator-valued Schur functions. Commun. Math. Phys. 329, 1031–1067 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues. Texts in Applied Mathematics 31. Springer, Berlin (1999)Google Scholar
  11. 11.
    Burgarth, D., Chiribella, G., Giovannetti, V., Perinotti, P., Yuasa, K.: Ergodic and mixing quantum channels in finite dimensions. New J. Phys. 15, 073045 (2013)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Burgarth, D., Giovannetti, V.: The generalized Lyapunov theorem and its application to quantum channels. New J. Phys. 9, 150 (2007)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Carbone, R., Pautrat, Y.: Homogeneous open quantum random walks on a lattice. Preprint arXiv:1408.1113v2
  14. 14.
    Carbone, R., Pautrat, Y.: Open quantum random walks: reducibility, period, ergodic properties. Preprint arXiv:1405.2214v3
  15. 15.
    de Oliveira, C.R.: Intermediate Spectral Theory and Quantum Dynamics. Birkhäuser Verlag, Basel (2009)CrossRefMATHGoogle Scholar
  16. 16.
    Fagnola, F., Rebolledo, R.: Transience and recurrence of quantum Markov semigroups. Probab. Theory Relat. Fields 126, 289306 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 3rd edn. Oxford University Press, Oxford (2001)MATHGoogle Scholar
  18. 18.
    Grünbaum, F.A., Velázquez, L., Werner, A.H., Werner, R.F.: Recurrence for discrete time unitary evolutions. Commun. Math. Phys. 320, 543569 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gudder, S.: Quantum Markov chains. J. Math. Phys. 49, 072105 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gudder, S.: Transition effect matrices and quantum Markov chains. Found. Phys. 39, 573–592 (2009)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRefMATHGoogle Scholar
  22. 22.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)CrossRefMATHGoogle Scholar
  23. 23.
    Konno, N., Yoo, H.J.: Limit theorems for open quantum random walks. J. Stat. Phys. 150, 299–319 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Kümmerer, B., Maassen, H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A Math. Gen. 37, 11889–11896 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lardizabal, C.F.: A quantization procedure based on completely positive maps and Markov operators. Quantum Inf. Process. 12, 1033–1051 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lardizabal, C.F., Souza, R.R.: On a class of quantum channels, open random walks and recurrence. J. Stat. Phys. 159, 772–796 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Liu, C., Petulante, N.: On limiting distributions of quantum Markov chains. Int. J. Math. Math. Sci., Vol 2011 (2011). ID 740816Google Scholar
  28. 28.
    Liu, C., Petulante, N.: Asymptotic evolution of quantum walks on the N-cycle subject to decoherence on both the coin and position degrees of freedom. Phys. Rev. E 81, 031113 (2010)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Lozinski, A., Życzkowski, K., Słomczyński, W.: Quantum iterated function systems. Phys. Rev. E 68, 04610 (2003)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lytvynov, E., Mei, L.: On the correlation measure of a family of commuting Hermitian operators with applications to particle densities of the quasi-free representations of the CAR and CCR. J. Funct. Anal. 245, 6288 (2007)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Mukhamedov, F.: Weak ergodicity of nonhomogeneous Markov chains on noncommutative \(L^1\)-spaces. Banach J. Math. Anal. 7(2), 53–73 (2013)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  33. 33.
    Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  34. 34.
    Novotný, J., Alber, G., Jex, I.: Asymptotic evolution of random unitary operations. Cent. Eur. J. Phys. 8(6), 1001–1014 (2010)Google Scholar
  35. 35.
    Novotný, J., Alber, G., Jex, I.: Asymptotic properties of quantum Markov chains. J. Phys. A Math. Theor. 45, 485301 (2012)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  37. 37.
    Pellegrini, C.: Continuous time open quantum random walks and non-Markovian Lindblad master equations. J. Stat. Phys. 154, 838–865 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Petz, D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)MATHGoogle Scholar
  39. 39.
    Platis, A., Limnios, N., Le Du, M.: Hitting time in a finite non-homogeneous Markov chain with applications. Appl. Stoch. Models Data Anal. 14, 241–253 (1998)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Portugal, R.: Quantum Walks and Search Algorithms. Springer, Berlin (2013)CrossRefMATHGoogle Scholar
  41. 41.
    Saloff-Coste, L., Zúñiga, J.: Convergence of some time inhomogeneous Markov chains via spectral techniques. Stoch. Proc. Appl. 117, 961–979 (2007)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Szehr, O., Wolf, M.M.: Perturbation bounds for quantum Markov processes and their fixed points. J. Math. Phys. 54, 032203 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Temme, K., Kastoryano, M.J., Ruskai, M.B., Wolf, M.M., Verstraete, F.: The \(\chi ^2\)-divergence and mixing times of quantum Markov processes. J. Math. Phys. 51, 12201 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Watrous, J.: Theory of Quantum Information Lecture Notes from Fall 2011. Institute for Quantum Computing, University of WaterlooGoogle Scholar
  46. 46.
    Wolf, M.M.: Quantum Channels & Operations Guided Tour Lecture Notes (unpublished). 5 July 2012Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Instituto de MatemáticaUniversidade Federal do Rio Grande do Sul - UFRGSPorto AlegreBrazil

Personalised recommendations