Journal of Statistical Physics

, Volume 164, Issue 3, pp 575–615 | Cite as

Critical Crossover Functions for Simple Fluids: Non-Analytical Scaling Determination of the Ising-Like Crossover Parameter

  • Yves Garrabos
  • Carole Lecoutre
  • Samuel Marre
  • Bernard LeNeindre
Article

Abstract

A non-analytical scaling determination of the Ising-like crossover parameter is proposed considering the critical isochore of a simple fluid at finite distance from its critical temperature. The mean crossover functions, estimated from the bounded results of the massive renormalization scheme in field theory applied to the \(\left( \Phi ^{2}\right) _{d}^{2}\left( n\right) \) model in three dimensions (\(d=3\)) and scalar order parameter (\(n=1\)), are used to formulate the corresponding scaling equations valid in two well-defined temperature ranges from the critical temperature. The validity range and the Ising-like nature of the corresponding crossover description are discussed in terms of a single Ising-like scale factor characterizing the critical isochore. The asymptotic value of this scale factor can be predicted within the Ising-like preasymptotic domain. Unfortunately, the absence of precise experimental data in such a close vicinity of the critical point leads the direct testing impossible. A contrario, from our scaling equations and the use of precise measurements performed at finite distance from the critical point, its local value can be estimated beyond the Ising-like preasymptotic domain. This non-analytical scaling determination only needs to make reference to the universal features estimated from the mean crossover functions and to introduce a single master dimensionless length common to all the simple fluids. This latter parameter guaranties the uniqueness of the physical length unit used for the theoretical crossover functions and the fluid singular properties when the generalized critical coordinates of the vapor-liquid critical point of each fluid are known. Xenon case along its critical isochore is considered as a typical example to demonstrate the singleness of the Ising-like crossover parameter. With the measurements at finite temperature range of the effective singular behaviors of the isothermal compressibility in the homogeneous domain, and the vapor-liquid coexisting densities in the non homogeneous domain, our scaling equations provide the local estimate of this crossover parameter as a function of the temperature distance from the critical temperature. Our results compare favorably with the single asymptotic value calculated only using four critical coordinates of xenon.

Keywords

Critical crossover function Crossover parameter Critical isochore Xenon 

References

  1. 1.
    Anisimov, M.A., Sengers, J.V.: 11 Critical region. In: Sengers, J.V., Kayser, R.F., Peters, C.J., White, H.J., Jr. (eds.) Equations of State for Fluids and Fluid Mixtures, Part I, pp. 381–434. Elsevier, Amsterdam (2000)Google Scholar
  2. 2.
    Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena, \(4^{rd}\). University Press, Oxford (2002)CrossRefGoogle Scholar
  3. 3.
    Bagnuls, C., Bervillier, C.: Nonasymptotic critical behaviour from field theory for Ising like systems in the homogeneous phase: theoretical framework. J. Phys. (Paris) Lett. 45, L95–L100 (1984)CrossRefGoogle Scholar
  4. 4.
    Bagnuls, C., Bervillier, C.: Classical-to-critical crossovers from field theory. Phys. Rev. B 32, 7209 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    Bagnuls, C., Bervillier, C.: Classical-to-critical crossovers from field theory. Phys. Rev. E 65, 066132–12p (2002). and references thereinADSCrossRefGoogle Scholar
  6. 6.
    Wilson, K.G., Kogut, J.: The renormalization group and the \(\varepsilon \) expansion. Phys. Rep. 12(2), 75–200 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    Privman, V., Hohenberg, P.C., Aharony, A.: Universal critical point amplitude relations. In: Domb, C., Lebowitz, J.B. (eds.) Phase Transitions and Critical Phenomena, pp. 1–134. Academic Press, New York (1991)Google Scholar
  8. 8.
    Guida, R., Zinn-Justin, J.: Critical exponents of the N-vector model. J. Phys. A 31, 8103–8122 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Garrabos, Y., Bervillier, C.: Mean crossover functions for uniaxial 3D Ising-like systems. Phys. Rev. E 74, 021113–16p (2006)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Wegner, F.J.: Corrections to scaling laws. Phys Rev. B 5, 4529–4536 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    Garrabos, Y., Lecoutre-Chabot, C., Palencia, F., LeNeindre, B., Erkey, C.J.: Master crossover functions for one-component fluids. Phys. Rev. E 77(2), 021116 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Schloms, R., Dohm, V.: Minimal renormalization without \(\varepsilon \)-expansion: critical behavior in three dimensions. Nucl. Phys. B 328, 639–663 (1989)Google Scholar
  13. 13.
    Krause, H.J., Schloms, R., Dohm, V.: Minimal renormalization without \(\varepsilon \)-expansion: amplitude functions in three dimensions. Z. Phys. B 79, 287–293 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    Chen, Z.Y., Albright, P.C., Sengers, J.V.: Crossover from singular critical to regular classical thermodynamic behavior of fluids. Phys. Rev. A 41, 3161–3177 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    Anisimov, M.A., Kiselev, S.B., Sengers, J.V., Tang, S.: Crossover approach to global critical phenomena in fluids. Phys. A 188, 487–525 (1992)CrossRefGoogle Scholar
  16. 16.
    Bagnuls, C., Bervillier, C., Garrabos, Y.: Experimental data analysis on xenon above the critical temperature from nonlinear renormalization group. J. Phys. (Paris) Lett. 45, L127–L132 (1984)CrossRefGoogle Scholar
  17. 17.
    Anisimov, M.A., Povodyrev, A.A., Kulikov, V.D., Sengers, J.V.: Nature of crossover between Ising-like and mean-field critical behavior in fluids and fluid mixtures. Phys. Rev. Lett. 75, 3146–3149 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Hahn, I., Zhong, F., Barmatz, M., Haussmann, R., Rudnick, J.: Crossover behavior in the isothermal susceptibility near the 3He critical point. Phys. Rev. E 63, 055104(R)–4p (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Zhong, F., Barmatz, M., Hahn, I.: Application of minimal substraction renormalization to crossover behavior near the 3He liquid-vapor critical point. Phys. Rev. E 67, 021106–20p (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Güttinger, H., Cannell, D.S.: Corrections to scaling in the susceptibility of xenon. Phys. Rev. A 24, 3188–3201 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    Garrabos, Y., Lecoutre, C., Marre, S., Guillaument, R., Beysens, D., Hahn, I.: Crossover equation of state models applied to the critical behavior of xenon. J. Stat. Phys. 158, 1379–1412 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Behnejad, H., Sengers, J.V., Anisimov, M.A.,In: Goodwin A.R.H., Sengers J.V., Peters C.J. (eds.) Applied Thermodynamics of Fluids, pp. 321–367. IUPAC, RSC Publishing, Cambridge (2010)Google Scholar
  23. 23.
    Hasenbusch, M.: A finite size scaling study of lattice models in the three-dimensional Ising Universality class. Phys. Rev. B 82, 174433 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Hasenbusch, M.: Universal amplitude ratios in the 3D Ising Universality class. Phys. Rev. B 82, 174434 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Pelissetto, A., Vicari, E.: Critical phenomena and renormalization group theory. Phys. Rep. 368, 549–727 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kim, Y.C., Fisher, M.E., Orkoulas, G.: Asymmetric fluid criticality. I. Scaling with pressure mixing. Phys. Rev. E 67, 061506 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Barmatz, M., Zhong, F., Shih, A.: Reanalysis of Microgravity Heat Capacity Measurements near the \({\rm SF}_{6}\) Liquid-Gas Critical Point. Int. J. Thermophys. 25, 1667–1673 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Garrabos Y.: Contribution à l’étude des propriétés d’état des fluides purs dans leur région critique, Thèse de Doctorat d’état, Université Paris 6 (1982)Google Scholar
  29. 29.
    Garrabos Y.: Facteurs d’échelle phénoménologiques pour la transition critique liquide-gaz des fluides purs, J. Phys. (Paris) 46, 281 (1985) [for an english version see also: Phenomenological Scale Factors for the Liquid-Vapor Critical Transition of Pure Fluids, cond-mat/0512408]Google Scholar
  30. 30.
    Garrabos, Y.: Scaling behaviour of the fluid subclass near the liquid-gas critical point. J. Phys. (Paris) 47, 197–206 (1986)CrossRefGoogle Scholar
  31. 31.
    Kim, Y.C., Anisimov, M.A., Sengers, J.V., Luijten, E.: Crossover critical behavior in the three-dimensional Ising model. J. Stat. Phys. 110, 591 (2003)CrossRefMATHGoogle Scholar
  32. 32.
    Garrabos, Y., Le Neindre, B., Wunenburger, R., Lecoutre-Chabot, C., Beysens, D.: Universal scaling form of the equation of state of a critical pure fluid. Int. J. Thermophys. 23, 997–1011 (2002)CrossRefGoogle Scholar
  33. 33.
    Kouvel, J.S., Fisher, M.E.: Detailed magnetic behavior of nickel near its curie point. Phys. Rev. 136, A1626–A1632 (1964)ADSCrossRefGoogle Scholar
  34. 34.
    Närger, U., Balzarini, D.A.: Coexistence-curve diameter and critical density of xenon. Phys. Rev. B 42, 6651–6657 (1990)ADSCrossRefGoogle Scholar
  35. 35.
    Cornfeld, A.B., Carr, H.Y.: Experimental evidence concerning the law of rectilinear diameter. Phys. Rev. Lett. 29, 28–32 (1972). Erratum, 29, E320 (1972)ADSCrossRefGoogle Scholar
  36. 36.
    Balzarini, D., Mouritsen, O.G.: Universal ratio of correction-to-scaling amplitudes for Xe. Phys. Rev. A 28, 3515–3519 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    Sengers, J.M.H.L., Greer, W.L., Sengers, J.V.: Scaled equation of state for gases in the critical region. J. Phys. Chem. Ref. Data 5, 1–51 (1976)ADSCrossRefGoogle Scholar
  38. 38.
    Fisher, M.E., Orkoulas, G.: The Yang–Yang anomaly in fluid criticality: experiment and scaling theory. Phys. Rev. Lett. 85, 696–699 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    Garrabos, Y., Lecoutre-Chabot, C., Palencia, F., Erkey, C.J., LeNeindre, B.: Master singular behavior from correlation length measurements for seven one-component fluids near their gas-liquid critical point. Phys. Rev. E 73, 026125–9p (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Le Guillou, J.C., Zinn-Justin, J.: Critical exponents for the N-vector model in three dimensions from field theory. Phys. Rev. Lett. 39, 95–98 (1977)ADSCrossRefGoogle Scholar
  41. 41.
    Sengers, J.L., Sengers, J.V.: Universality of critical behavior in gases. Phys. Rev. A 12, 2622–2627 (1975)ADSCrossRefGoogle Scholar
  42. 42.
    Levelt Sengers, J.M.H., Sengers, J.V.: Critical phenomena in classical fluids chap. 4. In: Croxton, C.A. (ed.) Progress in Liquid Physics, pp. 103–174. Wiley, New York (1978)Google Scholar
  43. 43.
    Green, M.S., Vicentini-Missoni, M., Levelt-Sengers, J.M.H.: Scaling-law equation of state for gases in the critical region. Phys. Rev. Lett. 18, 1113–1117 (1967)Google Scholar
  44. 44.
    Lecoutre, C., Guillaument, R., Marre, S., Garrabos, Y., Beysens, D., Hahn, I.: Weightless experiments to probe universality of fluid critical behavior. Phys. Rev. E 91, 060101(R)–5p (2015)ADSCrossRefMATHGoogle Scholar
  45. 45.
    Garrabos, Y.: Universality and quantum effects in one-component critical fluid. Phys. Rev. E 73, 056110–13p (2006)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Garrabos Y.: Is the entropy at the liquid-gas critical point of pure fluids proportional to a master dimensionless constant?, hal-00016454 (2006)Google Scholar
  47. 47.
    Gillis, K.A., Shinder, I.I., Moldover, M.R.: Thermoacoustic boundary layers near the liquid-vapor critical point. Phys. Rev. E 70, 021201–20p (2004)ADSCrossRefGoogle Scholar
  48. 48.
    Gillis, K.A., Shinder, I.I., Moldover, M.R.: Bulk viscosity of stirred xenon near the critical point. Phys. Rev. E 72, 051201–20p (2005)ADSCrossRefGoogle Scholar
  49. 49.
    Berg, R.F., Moldover, M.R., Zimmerli, G.A.: Frequency-dependent viscosity of xenon near the critical point. Phys. Rev. E 60, 4079–4098 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    Habgood, H.W., Schneider, W.G.: PVT measurements in the critical region of xenon. Can. J. Chem. 32, 98–112 (1954)CrossRefGoogle Scholar
  51. 51.
    Habgood, H.W., Schneider, W.G.: Thermodynamic properties of xenon in the critical region. Can. J. Chem. 32, 164–173 (1954)CrossRefGoogle Scholar
  52. 52.
    Weinberger, M.A., Schneider, W.G.: On the liquid-vapor coexistence curve of xenon in the region of the critical temperature. Can. J. Chem. 30, 422–422- (1952)CrossRefGoogle Scholar
  53. 53.
    Weinberger, M.A., Schneider, W.G.: Density distributions in a vertical tube containing xenon near the critical temperature as measured by a radioactive tracer technique. Can. J. Chem. 30, 847–859 (1952)CrossRefGoogle Scholar
  54. 54.
    Cannell, D.S., Benedek, G.B.: Brillouin Spectrum of Xenon Near Its Critical Point. Phys. Rev. Lett. 25, 1157–1161 (1970)ADSCrossRefGoogle Scholar
  55. 55.
    Smith, I.W., Giglio, M., Benedek, G.B.: Correlation range and compressibility of xenon near the critical point. Phys. Rev. Lett. 27, 1556–1559 (1971)ADSCrossRefGoogle Scholar
  56. 56.
    Baidakov, V.G., Rubshtein, A.M., Pomortsev, V.P., Sulla, I.J.: The equation of state of metastable liquid xenon near the critical point. Phys. Lett. A 131, 119–121 (1988)ADSCrossRefGoogle Scholar
  57. 57.
    Baidakov, V.G., Rubshtein, A.M., Pomortsev, V.P.: p,\(\rho \), T-properties of stable and metastable xenon near the liquid-vapor critical point. Fluid Mech. Res. 21(3), 89–101 (1992)Google Scholar
  58. 58.
    Michels, A., Wassenaar, T., Louwerse, P.: Isotherms of xenon at temperatures between 0\(^{\circ }\) C and 150\(^{\circ }\) C and at densities up to 515 Amagats (pressures up to 2800 atmospheres). Physica 20, 99–106 (1954)ADSCrossRefGoogle Scholar
  59. 59.
    Wilcox, L.R., Balzarini, D.: Interferometric determination of near-critical isotherms of xenon in the earth’s field. J. Chem. Phys. 48, 753–763 (1968)ADSCrossRefGoogle Scholar
  60. 60.
    Vicentini-Missoni, M., Levelt Sengers, J.M.H., Green, M.S.: Scaling analysis of thermodynamic properties in the critical region of fluids. J. Res. Natl. Bur. Stand. (USA) 73A, 563–583 (1969)CrossRefGoogle Scholar
  61. 61.
    Ho, J.T., Lister, J.D.: Faraday rotation near the ferromagnetic critical temperature of \({\rm CrBr}_{3}\). Phys. Rev. B 2, 4523–4532 (1970)ADSCrossRefGoogle Scholar
  62. 62.
    Estler, W.T., Hocken, R., Charlton, T., Wilcox, L.R.: Coexistence curve, compressibility, and the equation of state of xenon near the critical point. Phys. Rev. A 12, 2118–2136 (1975)ADSCrossRefGoogle Scholar
  63. 63.
    Hohenberg, P.C., Barmatz, M.: Gravity effects near the gas-liquid critical point. Phys. Rev. A 6, 289–313 (1972)ADSCrossRefGoogle Scholar
  64. 64.
    Swinney, H.L., Henry, D.L.: Dynamics of fluids near the critical point: decay rate of order-parameter fluctuations. Phys. Rev. A 8, 2586–2617 (1973)ADSCrossRefGoogle Scholar
  65. 65.
    Berg, R.F., Moldover, M.R.: Critical exponent for the viscosity of carbon dioxide and xenon. J. Chem. Phys. 93, 1926–19 (1990)ADSCrossRefGoogle Scholar
  66. 66.
    Berg, R.F., Lyell, M.J., McFadden, G.B., Rehm, R.G.: Internal waves in xenon near the critical point. Phys. Fluids 8, 1464–1475 (1996)ADSCrossRefGoogle Scholar
  67. 67.
    Fisher, M.E., Zinn, S.-Y., Hupton, P.J.: Trigonometric models for scaling behavior near criticality. Phys. Rev. B 59, 14533–14545 (1999)ADSCrossRefGoogle Scholar

Copyright information

© European Union  2016

Authors and Affiliations

  • Yves Garrabos
    • 1
    • 2
  • Carole Lecoutre
    • 1
    • 2
  • Samuel Marre
    • 1
    • 2
  • Bernard LeNeindre
    • 3
    • 4
  1. 1.CNRS, Institut de Chimie de la Matière Condensée de Bordeaux - UPR 9048Pessac CedexFrance
  2. 2.Université de Bordeaux, ICMCB-UPR 9048Pessac CedexFrance
  3. 3.CNRS, Laboratoire des Sciences des Procédés et des Matériaux- UPR 3407VilletaneuseFrance
  4. 4.Université Paris 13 - Sorbonne Paris CitéVilletaneuseFrance

Personalised recommendations