Advertisement

Journal of Statistical Physics

, Volume 164, Issue 2, pp 304–320 | Cite as

Amplitude Function of Asymptotic Correlations Along Charged Wall in Coulomb Fluids

  • Ladislav ŠamajEmail author
Article

Abstract

In classical semi-infinite Coulomb fluids, two-point correlation functions exhibit a slow inverse-power law decay along a uniformly charged wall. In this work, we concentrate on the corresponding amplitude function which depends on the distances of the two points from the wall. Recently Šamaj (J Stat Phys 161:227–249 2015), applying a technique of anticommuting variables to a 2D system of charged rectilinear wall with “counter-ions only”, we derived a relation between the amplitude function and the density profile which holds for any temperature. In this paper, using the Möbius conformal transformation of particle coordinates in a disc, a new relation between the amplitude function and the density profile is found for that model. In all exactly solvable cases, the amplitude function factorizes itself in the two distances from the wall. Presupposing this factorization property at any temperature and using specific sum rules for semi-infinite geometries, a relation between the amplitude function of the charge-charge structure function and the charge profile is derived for many-component Coulomb fluids in any dimension.

Keywords

Coulomb fluid Counter-ions Free-fermion point Sum rules 

Notes

Acknowledgments

The support received from Grant VEGA No. 2/0015/15 is acknowledged.

References

  1. 1.
    Andelman, D.: Introduction to electrostatics in soft and biological matter. In: Poon, W.C.K., Andelman, D. (eds.) Soft Condensed Matter Physics in Molecular and Cell Biology, vol. 6. Taylor & Francis, New York (2006)Google Scholar
  2. 2.
    Attard, P., Mitchell, D.J., Ninham, B.W.: Beyond Poisson–Boltzmann: images and correlations in the electric double layer. I. Counterions only. J. Chem. Phys. 88, 4987–4996 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    Attard, P.: Electrolytes and the electric double layer. Adv. Chem. Phys. XCII, 1–159 (1996)Google Scholar
  4. 4.
    Blum, L., Henderson, D., Lebowitz, J.L., Gruber, Ch., Martin, Ph.A.: A sum rule for an inhomogeneous electrolyte. J. Chem. Phys. 75, 5974–5975 (1981)Google Scholar
  5. 5.
    Boroudjerdi, H., Kim, Y.-W., Naji, A., Netz, R.R., Schlagberger, X., Serr, A.: Statics and dynamics of strongly charged soft matter. Phys. Rep. 416, 129–199 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Choquard, Ph, Piller, B., Rentsch, R.: On the dielectric susceptibility of classical Coulomb systems. J. Stat. Phys. 43, 197–205 (1986)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Choquard, Ph, Piller, B., Rentsch, R.: On the dielectric susceptibility of classical Coulomb systems. II. J. Stat. Phys. 46, 599–633 (1987)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Choquard, Ph, Piller, B., Rentsch, R., Vieillefosse, P.: Surface properties of finite classical Coulomb systems: Debye–Hückel approximation and computer simulations. J. Stat. Phys. 55, 1185–1262 (1989)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Cornu, F., Jancovici, B.: The electrical double layer: a solvable model. J. Chem. Phys. 90, 2444–2452 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    dos Santos, A.P., Diehl, A., Levin, Y.: Electrostatic correlations in colloidal suspensions: density profiles and effective charges beyond the Poisson-Boltzmann theory. J. Chem. Phys. 130, 124110 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Hansen, J.P., Löwen, H.: Effective interactions between electric double layers. Annu. Rev. Phys. Chem. 51, 209–242 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Jancovici, B.: Classical Coulomb systems near a plane wall. I. J. Stat. Phys. 28, 43–65 (1982)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Jancovici, B.: Classical Coulomb systems near a plane wall. II. J. Stat. Phys. 29, 263–280 (1982)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Jancovici, B.: Surface properties of a classical two-dimensional one-component plasma: exact results. J. Stat. Phys. 34, 803–815 (1984)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Jancovici, B.: Inhomogeneous two-dimensional plasmas. In: Henderson, D. (ed.) Inhomogeneous Fluids, pp. 201–237. Dekker, New York (1992)Google Scholar
  16. 16.
    Jancovici, B.: Classical Coulomb systems: screening and correlations revisited. J. Stat. Phys. 80, 445–459 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jancovici, B., Šamaj, L.: Charge correlations in a Coulomb system along a plane wall: a relation between asymptotic behavior and dipole moment. J. Stat. Phys. 105, 193–209 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jancovici, B.: Surface correlations for two-dimensional Coulomb fluids in a disc. J. Phys. 14, 9121–9132 (2002)Google Scholar
  19. 19.
    Mallarino, J.P., Téllez, G., Trizac, E.: Counter-ion density profile around charged cylinders: the strong-coupling needle limit. J. Phys. Chem. B 117, 12702–12716 (2013)CrossRefGoogle Scholar
  20. 20.
    Mallarino, J.P., Téllez, G.: Counter-ion density profile around a charged disc: from the weak to the strong association regime. Phys. Rev. E 91, 062140 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Martin, PhA: Sum rules in charged fluids. Rev. Mod. Phys. 60, 1075–1127 (1988)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Messina, R.: Electrostatics in soft matter. J. Phys. 21, 113102 (2009)MathSciNetGoogle Scholar
  23. 23.
    Netz, R.R., Orland, H.: Beyond Poisson–Boltzmann: fluctuation effects and correlation functions. Eur. Phys. J. E 1, 203–214 (2000)CrossRefGoogle Scholar
  24. 24.
    Netz, R.R.: Electrostatics of counter-ions at and between planar charged walls: from Poisson–Boltzmann to the strong-coupling theory. Eur. Phys. J. E 5, 557–574 (2001)CrossRefGoogle Scholar
  25. 25.
    Podgornik, R.: An analytic treatment of the first-order correction to the Poisson-Boltzmann interaction free energy in the case of counter-ion only Coulomb fluid. J. Phys. A 23, 275–284 (1990)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Šamaj, L., Percus, J.K.: A functional relation among the pair correlations of the two-dimensional one-component plasma. J. Stat. Phys. 80, 811–824 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Šamaj, L.: Microscopic calculation of the dielectric susceptibility tensor for Coulomb fluids. J. Stat. Phys. 100, 949–967 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Šamaj, L.: Is the two-dimensional one-component plasma exactly solvable? J. Stat. Phys. 117, 131–158 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Šamaj, L., Jancovici, B.: Charge and current sum rules in quantum media coupled to radiation II. J. Stat. Phys. 139, 432–453 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Šamaj, L., Trizac, E.: Counterions at highly charged interfaces: from one plate to like-charge attraction. Phys. Rev. Lett. 106, 078301 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Šamaj, L., Trizac, E.: Counter-ions at charged walls: two-dimensional systems. Eur. Phys. J. E 34, 20 (2011)CrossRefGoogle Scholar
  32. 32.
    Šamaj, L.: Counter-ions at single charged wall: sum rules. Eur. Phys. J. E 36, 100 (2013)CrossRefGoogle Scholar
  33. 33.
    Šamaj, L., Trizac, E.: Counter-ions between or at asymmetrically charged walls: 2D free-fermion point. J. Stat. Phys. 156, 932–947 (2014)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Šamaj, L.: Counter-ions near a charged wall: Exact results for disc and planar geometries. J. Stat. Phys. 161, 227–249 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Shklovskii, B.I.: Screening of a macroion by multivalent ions: Correlation-induced inversion of charge. Phys. Rev. E 60, 5802–5811 (1999)ADSCrossRefGoogle Scholar
  36. 36.
    Usenko, A.S., Yakimenko, I.P.: Interaction energy of stationary charges in a bounded plasma. Sov. Tech. Phys. Lett. 5, 549–550 (1979)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations