Journal of Statistical Physics

, Volume 164, Issue 1, pp 166–173 | Cite as

Truncated Long-Range Percolation on Oriented Graphs

  • A. C. D. van Enter
  • B. N. B. de LimaEmail author
  • D. Valesin


We consider different problems within the general theme of long-range percolation on oriented graphs. Our aim is to settle the so-called truncation question, described as follows. We are given probabilities that certain long-range oriented bonds are open; assuming that the sum of these probabilities is infinite, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. We give some conditions in which the answer is affirmative. We also translate some of our results on oriented percolation to the context of a long-range contact process.


Contact processes Oriented percolation Long-range percolation Truncation 

Mathematics Subject Classification

60K35 82B43 



This work was done during B.N.B.L.’s sabbatical stay at IMPA; he would like to thank Rijksuniversiteit Groningen and IMPA for their hospitality. The research of B.N.B.L. was supported in part by CNPq and FAPEMIG (Programa Pesquisador Mineiro).


  1. 1.
    Aizenman, M., Duminil-Copin, H., Sidoravicius, V.: Random currents and continuity of Ising model’s spontaneous magnetization. Commun. Math. Phys. 334(2), 719–742 (2013)Google Scholar
  2. 2.
    Berger, N.: Transience, recurrence and critical behavior for long-range percolation. Commun. Math. Phys. 226, 531–558 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Biroli, G., Toninelli, C.: A new class of cellular automata with a discontinuous glass transition. J. Stat. Phys. 130(1), 83–112 (2008)ADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    Biskup, M., Chayes, L., Crawford, N.: Mean-field driven first-order phase transitions in systems with long-range interactions. J. Stat. Phys. 122(6), 1139–1193 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bricmont, J., van den Bosch, H.: Intermediate model between majority voter PCA and its mean field model. J. Stat. Phys. 158(5), 1090–1099 (2015)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chayes, L.: Mean field analysis of low dimensional systems. Commun. Math. Phys. 292(2), 303–341 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Friedli, S., de Lima, B.N.B.: On the truncation of systems with non-summable Interactions. J. Stat. Phys. 122(6), 1215–1236 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Friedli, S., de Lima, B.N.B., Sidoravicius, V.: On long range percolation with heavy tails. Electron. Commun. Probab. 9, 175–177 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gobron, T., Merola, I.: First-order phase transition in Potts models with finite-range interactions. J. Stat. Phys. 126(3), 507–583 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Grimmett, G., Marstrand, J.M.: The supercritical phase of percolation is well behaved. Proc. R. Soc. Lond. Ser. A 430, 439–457 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Harris, T.E.: Contact interactions on a lattice. Ann. Probab. 2, 969–988 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lebowitz, J., Maes, C., Speer, E.R.: Statistical mechanics of probabilistic cellular automata. J. Stat. Phys. 59(1–2), 117–170 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    de Lima, B.N.B., Sapozhnikov, A.: On the truncated long range percolation on \(\mathbb{Z}^2\). J. Appl. Probab. 45, 287–291 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Meester, R., Steif, J.: On the continuity of the critical value for long range percolation in the exponential case. Commun. Math. Phys. 180(2), 483–504 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Menshikov, M., Sidoravicius, V., Vachkovskaia, M.: A note on two-dimensional truncated long-range percolation. Adv. Appl. Probab. 33, 912–929 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Schonmann, R.H.: On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20, 174–193 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Sidoravicius, V., Surgailis, D., Vares, M.E.: On the truncated anisotropic long-range percolation on \(\mathbf{Z}^2\). Stoch. Process. Appl. 81, 337–349 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Slade, G., The lace expansion and its applications. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 624 (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Johann Bernoulli InstituutRijksuniversiteit GroningenGroningenThe Netherlands
  2. 2.Departamento de MatemáticaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations