Journal of Statistical Physics

, Volume 163, Issue 6, pp 1477–1485 | Cite as

Better Stability with Measurement Errors

  • Aykut Argun
  • Giovanni VolpeEmail author


Often it is desirable to stabilize a system around an optimal state. This can be effectively accomplished using feedback control, where the system deviation from the desired state is measured in order to determine the magnitude of the restoring force to be applied. Contrary to conventional wisdom, i.e. that a more precise measurement is expected to improve the system stability, here we demonstrate that a certain degree of measurement error can improve the system stability. We exemplify the implications of this finding with numerical examples drawn from various fields, such as the operation of a temperature controller, the confinement of a microscopic particle, the localization of a target by a microswimmer, and the control of a population.


Noisy systems Stochastic differential equations Stability Measurement 



GV has been partially financially supported by Marie Curie Career Integration Grant (MC-CIG) under Grant PCIG11 GA-2012-321726 and a Distinguished Young Scientist award of the Turkish Academy of Sciences (TÜBA).

Supplementary material

Supplementary material 1 (mp4 6498 KB)


  1. 1.
    B. C. Kuo and F. Golnaraghi, Automatic control systems (John Wiley & Sons, Inc., New York, NY, 2008), 8th edGoogle Scholar
  2. 2.
    H. C. Berg, E. coli in Motion (Springer Verlag, Heidelberg, Germany, 2004)Google Scholar
  3. 3.
    Botsford, L.W., Castilla, J.C., Peterson, C.H.: The management of fisheries and marine ecosystems. Science 277, 509 (1997)CrossRefGoogle Scholar
  4. 4.
    Meffe, G., Nielsen, L., Knight, R.L., Schenborn, D.: Ecosystem management: Adaptive, community-based conservation. Island Press, Washington, DC (2012)Google Scholar
  5. 5.
    Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback control of dynamic systems, vol. 320. Addison-Wesley, Reading, MA (1991)zbMATHGoogle Scholar
  6. 6.
    Øksendal, B.: Stochastic differential equations. Springer Verlag, Heidelberg, Germany (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Vilar, J.M.G.: Rubí, Noise suppression by noise, J.M. Phys. Rev. Lett. 86, 950–953 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Volpe, G., Wehr, J., Petrov, D., Rubi, J.M.: Thermal noise suppression: How much does it cost? J. Phys. A: Math. Theo. 42, 095005 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Springer Verlag, Heidelberg, Germany (1999)zbMATHGoogle Scholar
  10. 10.
    Volpe, G., Volpe, G.: Simulation of a brownian particle in an optical trap Am. J. Phys. 81, 224–231 (2013)ADSGoogle Scholar
  11. 11.
    Ohta, A.T., Chiou, P.-Y., Phan, H.L., Sherwood, S.W., Yang, J.M., Lau, A.N.K., Hsu, H.-Y., Jamshidi, A., Wu, M.C.: IEEE, : Optically controlled cell discrimination and trapping using optoelectronic tweezers. J. Sel. Top. Quant. El. 13, 235–243 (2007)CrossRefGoogle Scholar
  12. 12.
    Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interfac. Sci. 179, 298–310 (1996)CrossRefGoogle Scholar
  13. 13.
    Rohrbach, A., Stelzer, E.H.K.: Three-dimensional position detection of optically trapped dielectric particles. J. Appl. Phys. 91, 5474–5488 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Ebbens, S.J., Howse, J.R.: In pursuit of propulsion at the nanoscale. Soft Matter 6, 726–738 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, Active Brownian particles in complex and crowded environments, arXiv:1602.00081 (2016)
  16. 16.
    Berg, H.C., Brown, D.A.: Chemotaxis in escherichia coli analysed by three-dimensional tracking. Nature 239, 500–504 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    Mijalkov, M., McDaniel, A., Wehr, J., Volpe, G.: Engineering sensorial delay to control phototaxis and emergent collective behaviors. Phys. Rev. X 6, 011008 (2016)Google Scholar
  18. 18.
    Volpe, G., Gigan, S., Volpe, G.: Simulation of the active Brownian motion of a microswimmer. Am. J. Phys. 82, 659–664 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsBilkent UniversityAnkaraTurkey

Personalised recommendations