Journal of Statistical Physics

, Volume 163, Issue 2, pp 440–455 | Cite as

Anomalous Growth of Aging Populations

Article

Abstract

We consider a discrete-time population dynamics with age-dependent structure. At every time step, one of the alive individuals from the population is chosen randomly and removed with probability \(q_k\) depending on its age, whereas a new individual of age 1 is born with probability r. The model can also describe a single queue in which the service order is random while the service efficiency depends on a customer’s “age” in the queue. We propose a mean field approximation to investigate the long-time asymptotic behavior of the mean population size. The age dependence is shown to lead to anomalous power-law growth of the population at the critical regime. The scaling exponent is determined by the asymptotic behavior of the probabilities \(q_k\) at large k. The mean field approximation is validated by Monte Carlo simulations.

Keywords

Queue Population Birth-death process Markov model Aging 

References

  1. 1.
    Murrey, J.D.: Mathematical Biology. I. An Introducation, 3rd edn. Springer, New York (2002)Google Scholar
  2. 2.
    Hoppensteadt, F.C.: Mathematical Theories of Populations: Demographics, Genetics and Epidemics (Volume 20 of CBMS Lectures). SIAM Publications, Philadelphia (1975)CrossRefMATHGoogle Scholar
  3. 3.
    Hoppensteadt, F.C.: Mathematical Methods of Population Biology (Cambridge Studies in Mathematical Biology). Cambridge University Press, Cambridge (1982)CrossRefMATHGoogle Scholar
  4. 4.
    Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology, 2nd edn. Springer, New York (2012)CrossRefMATHGoogle Scholar
  5. 5.
    Takacs, L.: Introduction to the Theory of Queues. Oxford University Press, New York (1962)MATHGoogle Scholar
  6. 6.
    Gross, D., Harris, C.M.: Fundamentals of Queueing Theory. Wiley, New York (1998)MATHGoogle Scholar
  7. 7.
    Bolch, G., Greiner, S., de Meer, H., Trivedi, S.: Queueing Networks and Markov Chains. Wiley, New York (1998)CrossRefMATHGoogle Scholar
  8. 8.
    van Houdt, B., Lenin, R.B.: Delay distribution of (im)patient customers in a discrete time D-MAP/PH/1 queue with age-dependent service times. Queueing Syst. 45, 59–73 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    McKendrick, A.G.: Applications of mathematics to medical problems. Proc. Edinb. Math. Soc. 44, 98–130 (1926)CrossRefGoogle Scholar
  10. 10.
    Keyfitz, B.L., Keyfitz, N.: The McKendrick partial differential equation and its uses in epidemiology and population study. Math. Comput. Model. 26, 1–9 (1997)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)MATHGoogle Scholar
  12. 12.
    Gurtin, M.E., Maccamy, R.C.: Non-linear age-dependent population dynamics. Arch. Ration. Mech. Anal. 54(3), 281–300 (1974)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gurtin, M.E., Maccamy, R.C.: Some simple models for nonlinear age-dependent population dynamics. Math. Biosci. 43, 199–211 (1979)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cushing, J.M., Saleem, M.: A predator prey model with age structure. J. Math. Biol. 14, 231–250 (1982)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Busenberg, S., Iannelli, M.: Separable models in age-dependent population dynamics. J. Math. Biol. 22, 145–173 (1985)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Swart, J.H.: Stable controls in age-dependent population dynamics. Math. Biosci. 95, 53–63 (1989)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rudnicki, R. (ed.): Mathematical Modelling of Population Dynamics, vol. 63. Banach Center Publications, Warszawa (2004)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratoire de Physique de la Matière Condensée (UMR 7643)CNRS – Ecole PolytechniquePalaiseauFrance
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations