# A Pfaffian Formula for Monomer–Dimer Partition Functions

- 200 Downloads
- 3 Citations

## Abstract

We consider the monomer–dimer partition function on arbitrary finite planar graphs and arbitrary monomer and dimer weights, with the restriction that the only non-zero monomer weights are those on the boundary. We prove a Pfaffian formula for the corresponding partition function. As a consequence of this result, multipoint boundary monomer correlation functions at close packing are shown to satisfy fermionic statistics. Our proof is based on the celebrated Kasteleyn theorem, combined with a theorem on Pfaffians proved by one of the authors, and a careful labeling and directing procedure of the vertices and edges of the graph.

## Keywords

Monomer–dimer problem Pfaffian formula Boundary monomers## Notes

### Acknowledgments

Thanks go to Jan Philip Solovej and Lukas Schimmer for devoting their time to some preliminary calculations that helped put us on the right track. We also would like to thank Tom Spencer and Joel Lebowitz for their hospitality at the IAS in Princeton and their continued interest in this problem. In addition, we thank Michael Aizenman and Hugo Duminil-Copin for discussing their work in progress on the random current representation for planar lattice models with us. We thank Jacques Perk and Fa Yueh Wu for very useful historical comments. We gratefully acknowledge financial support from the A*MIDEX project ANR-11-IDEX-0001-02 (A.G.), from the PRIN National Grant *Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions* (A.G. and I.J.), and NSF grant PHY-1265118 (E.H.L.).

## References

- 1.Aizenman, M.: Geometric analysis of \(\varphi ^4\) fields and Ising models. Commun. Math. Phys.
**86**(1), 1–48 (1982)ADSMathSciNetCrossRefMATHGoogle Scholar - 2.Alberici, D., Contucci, P., Mingione, E.: A mean-field monomer–dimer model with attractive interaction: exact solution and rigorous results. J. Math. Phys.
**55**, 063301 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar - 3.Allegra, N., Fortin, J.: Grassmannian representation of the two-dimensional monomer–dimer model. Phys. Rev.
**89**, 062107 (2014)CrossRefGoogle Scholar - 4.Au-Yang, H., Perk, J.H.H.: Ising correlations at the critical temperature. Phys. Lett. A
**104**(3), 131–134 (1984)ADSMathSciNetCrossRefGoogle Scholar - 5.Ayyer, A.: A statistical model of current loops and magnetic monopoles. Math. Phys. Anal. Geom.
**18**(1), 1–19 (2015)MathSciNetCrossRefMATHGoogle Scholar - 6.Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math.
**181**(3), 1087–1138 (2015)MathSciNetCrossRefMATHGoogle Scholar - 7.Dubédat, J.: Exact bosonization of the Ising model, arXiv:1112.4399, (2011)
- 8.Dubédat, J.: Dimers and families of Cauchy–Riemann operators I. J. Am. Math. Soc.
**28**(4), 1063–1167 (2015)MathSciNetCrossRefMATHGoogle Scholar - 9.Fisher, M.E., Stephenson, J.: Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers. Phys. Rev.
**132**(4), 1411–1431 (1963)ADSMathSciNetCrossRefMATHGoogle Scholar - 10.Fisher, M., Hartwig, R.E.: In: Shuler, K.E. (ed.) Stochastic Processes in Chemical Physics, vol. 15, p. 333. Wiley, New York (1969)Google Scholar
- 11.Giuliani, A., Greenblatt, R.L., Mastropietro, V.: The scaling limit of the energy correlations in non-integrable Ising models. J. Math. Phys.
**53**, 095214 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar - 12.Giuliani, A., Mastropietro, V., Toninelli, F.: Height fluctuations in non-integrable classical dimers. EPL (Europhys. Lett.)
**109**(6), 60004 (2015)ADSCrossRefGoogle Scholar - 13.Giuliani, A., Mastropietro, V., Toninelli, F.L.: Height fluctuations in interacting dimers, Annales de l’Institut Henri Poincaré, Probability and Statistics, in press, arXiv:1406.7710, (2015)
- 14.Groeneveld, J., Boel, R., Kasteleyn, P.: Correlation-function identities for general planar Ising systems. Physica A
**93**(1–2), 138–154 (1978)ADSCrossRefGoogle Scholar - 15.Hartwig, R.E.: Monomer pair correlations. J. Math. Phys.
**7**(2), 286–299 (1966)ADSMathSciNetCrossRefGoogle Scholar - 16.Heilmann, O.J., Lieb, E.H.: Monomers and dimers. Phys. Rev. Lett.
**24**(25), 1412–1414 (1970)ADSCrossRefGoogle Scholar - 17.Heilmann, O.J., Lieb, E.H.: Theory of monomer–dimer systems. Commun. Math. Phys.
**25**(3), 190–232 (1972). Errata, Vol. 27, p. 166ADSMathSciNetCrossRefMATHGoogle Scholar - 18.Jerrum, M.: Two-dimensional monomer-dimer systems are computationally intractable. J. Stat. Phys.
**48**, 1–2 (1987)MathSciNetCrossRefGoogle Scholar - 19.Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Math. Phys.
**4**(2), 287–293 (1963)ADSMathSciNetCrossRefGoogle Scholar - 20.Kenyon, C., Randall, D., Sinclair, A.: Approximating the number of monomer–dimer coverings of a lattice. J. Stat. Phys.
**83**, 3–4 (1996)MathSciNetCrossRefMATHGoogle Scholar - 21.Kenyon, R.: Conformal invariance of domino tiling. Ann. Probab.
**28**(2), 759–795 (2000)MathSciNetCrossRefMATHGoogle Scholar - 22.Kenyon, R.: Dominos and the Gaussian free field. Ann. Probab.
**29**(3), 1128–1137 (2001)MathSciNetCrossRefMATHGoogle Scholar - 23.Kong, Y.: Monomer–dimer model in two-dimensional rectangular lattices with fixed dimer density. Phys. Rev. E
**74**, 061102 (2006)ADSCrossRefGoogle Scholar - 24.Krauth, W.: Statistical Mechanics: Algorithms and Computations. Oxford Masters Series in Statistical, Computational, and Theoretical Physics. Oxford University Press, Oxford (2006)MATHGoogle Scholar
- 25.Kuperberg, G.: Symmetries of plane partitions and the permanent-determinant method. J. Comb. Theory Ser. A
**68**(1), 115–151 (1994)MathSciNetCrossRefMATHGoogle Scholar - 26.Lieb, E.H.: Solution of the dimer problem by the transfer matrix method. J. Math. Phys.
**8**(12), 2339–2341 (1967)ADSMathSciNetCrossRefGoogle Scholar - 27.Lieb, E.H.: A theorem on Pfaffians. J. Comb. Theory
**5**, 313–319 (1968)ADSMathSciNetCrossRefMATHGoogle Scholar - 28.Lieb, E.H., Loss, M.: Fluxes, Laplacians, and Kasteleyn’s theorem. Duke Math. J.
**71**(2), 337–363 (1993)MathSciNetCrossRefMATHGoogle Scholar - 29.Pinson, H., Spencer, T.: Universality and the two-dimensional Ising model, unpublishedGoogle Scholar
- 30.Priezzhev, V.B., Ruelle, P.: Boundary monomers in the dimer model. Phys. Rev. E
**77**, 061126 (2008)ADSCrossRefGoogle Scholar - 31.Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics
**333**(3), 239–244 (2001)ADSCrossRefMATHGoogle Scholar - 32.Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math.
**172**(2), 1435–1467 (2010)MathSciNetCrossRefMATHGoogle Scholar - 33.Spencer, T.: A mathematical approach to universality in two dimensions. Physica A
**279**, 250–259 (2000)ADSMathSciNetCrossRefGoogle Scholar - 34.Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics—an exact result. Philos. Mag.
**6**(68), 1061–1063 (1961)ADSMathSciNetCrossRefMATHGoogle Scholar - 35.Temperley, H.N.V.: Enumeration of graphs on a large periodic lattice, combinatorics. In: The Proceedings of the British Combinatorical Conference, 1973, London Mathematical Society lecture note series, Vol. 13, Cambridge University Press, 1974Google Scholar
- 36.Tzeng, W., Wu, F.Y.: Dimers on a simple-quartic net with a vacancy. J. Stat. Phys.
**110**(3–6), 671–689 (2003)MathSciNetCrossRefMATHGoogle Scholar - 37.Wu, F.Y.: Pfaffian solution of a dimer–monomer problem: single monomer on the boundary. Phys. Rev. E
**74**, 020104 (2006). Erratum: n. 039907(E)ADSMathSciNetCrossRefGoogle Scholar - 38.Wu, F.Y., Tzeng, W., Izmailian, N.S.: Exact solution of a monomer-dimer problem: a single boundary monomer on a nonbipartite lattice. Phys. Rev. E
**83**, 011106 (2011)ADSCrossRefGoogle Scholar