Journal of Statistical Physics

, Volume 163, Issue 2, pp 211–238

# A Pfaffian Formula for Monomer–Dimer Partition Functions

• Alessandro Giuliani
• Ian Jauslin
• Elliott H. Lieb
Article

## Abstract

We consider the monomer–dimer partition function on arbitrary finite planar graphs and arbitrary monomer and dimer weights, with the restriction that the only non-zero monomer weights are those on the boundary. We prove a Pfaffian formula for the corresponding partition function. As a consequence of this result, multipoint boundary monomer correlation functions at close packing are shown to satisfy fermionic statistics. Our proof is based on the celebrated Kasteleyn theorem, combined with a theorem on Pfaffians proved by one of the authors, and a careful labeling and directing procedure of the vertices and edges of the graph.

## Keywords

Monomer–dimer problem Pfaffian formula Boundary monomers

## Notes

### Acknowledgments

Thanks go to Jan Philip Solovej and Lukas Schimmer for devoting their time to some preliminary calculations that helped put us on the right track. We also would like to thank Tom Spencer and Joel Lebowitz for their hospitality at the IAS in Princeton and their continued interest in this problem. In addition, we thank Michael Aizenman and Hugo Duminil-Copin for discussing their work in progress on the random current representation for planar lattice models with us. We thank Jacques Perk and Fa Yueh Wu for very useful historical comments. We gratefully acknowledge financial support from the A*MIDEX project ANR-11-IDEX-0001-02 (A.G.), from the PRIN National Grant Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions (A.G. and I.J.), and NSF grant PHY-1265118 (E.H.L.).

## References

1. 1.
Aizenman, M.: Geometric analysis of $$\varphi ^4$$ fields and Ising models. Commun. Math. Phys. 86(1), 1–48 (1982)
2. 2.
Alberici, D., Contucci, P., Mingione, E.: A mean-field monomer–dimer model with attractive interaction: exact solution and rigorous results. J. Math. Phys. 55, 063301 (2014)
3. 3.
Allegra, N., Fortin, J.: Grassmannian representation of the two-dimensional monomer–dimer model. Phys. Rev. 89, 062107 (2014)
4. 4.
Au-Yang, H., Perk, J.H.H.: Ising correlations at the critical temperature. Phys. Lett. A 104(3), 131–134 (1984)
5. 5.
Ayyer, A.: A statistical model of current loops and magnetic monopoles. Math. Phys. Anal. Geom. 18(1), 1–19 (2015)
6. 6.
Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. Ann. Math. 181(3), 1087–1138 (2015)
7. 7.
Dubédat, J.: Exact bosonization of the Ising model, arXiv:1112.4399, (2011)
8. 8.
Dubédat, J.: Dimers and families of Cauchy–Riemann operators I. J. Am. Math. Soc. 28(4), 1063–1167 (2015)
9. 9.
Fisher, M.E., Stephenson, J.: Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers. Phys. Rev. 132(4), 1411–1431 (1963)
10. 10.
Fisher, M., Hartwig, R.E.: In: Shuler, K.E. (ed.) Stochastic Processes in Chemical Physics, vol. 15, p. 333. Wiley, New York (1969)Google Scholar
11. 11.
Giuliani, A., Greenblatt, R.L., Mastropietro, V.: The scaling limit of the energy correlations in non-integrable Ising models. J. Math. Phys. 53, 095214 (2012)
12. 12.
Giuliani, A., Mastropietro, V., Toninelli, F.: Height fluctuations in non-integrable classical dimers. EPL (Europhys. Lett.) 109(6), 60004 (2015)
13. 13.
Giuliani, A., Mastropietro, V., Toninelli, F.L.: Height fluctuations in interacting dimers, Annales de l’Institut Henri Poincaré, Probability and Statistics, in press, arXiv:1406.7710, (2015)
14. 14.
Groeneveld, J., Boel, R., Kasteleyn, P.: Correlation-function identities for general planar Ising systems. Physica A 93(1–2), 138–154 (1978)
15. 15.
Hartwig, R.E.: Monomer pair correlations. J. Math. Phys. 7(2), 286–299 (1966)
16. 16.
Heilmann, O.J., Lieb, E.H.: Monomers and dimers. Phys. Rev. Lett. 24(25), 1412–1414 (1970)
17. 17.
Heilmann, O.J., Lieb, E.H.: Theory of monomer–dimer systems. Commun. Math. Phys. 25(3), 190–232 (1972). Errata, Vol. 27, p. 166
18. 18.
Jerrum, M.: Two-dimensional monomer-dimer systems are computationally intractable. J. Stat. Phys. 48, 1–2 (1987)
19. 19.
Kasteleyn, P.W.: Dimer statistics and phase transitions. J. Math. Phys. 4(2), 287–293 (1963)
20. 20.
Kenyon, C., Randall, D., Sinclair, A.: Approximating the number of monomer–dimer coverings of a lattice. J. Stat. Phys. 83, 3–4 (1996)
21. 21.
Kenyon, R.: Conformal invariance of domino tiling. Ann. Probab. 28(2), 759–795 (2000)
22. 22.
Kenyon, R.: Dominos and the Gaussian free field. Ann. Probab. 29(3), 1128–1137 (2001)
23. 23.
Kong, Y.: Monomer–dimer model in two-dimensional rectangular lattices with fixed dimer density. Phys. Rev. E 74, 061102 (2006)
24. 24.
Krauth, W.: Statistical Mechanics: Algorithms and Computations. Oxford Masters Series in Statistical, Computational, and Theoretical Physics. Oxford University Press, Oxford (2006)
25. 25.
Kuperberg, G.: Symmetries of plane partitions and the permanent-determinant method. J. Comb. Theory Ser. A 68(1), 115–151 (1994)
26. 26.
Lieb, E.H.: Solution of the dimer problem by the transfer matrix method. J. Math. Phys. 8(12), 2339–2341 (1967)
27. 27.
Lieb, E.H.: A theorem on Pfaffians. J. Comb. Theory 5, 313–319 (1968)
28. 28.
Lieb, E.H., Loss, M.: Fluxes, Laplacians, and Kasteleyn’s theorem. Duke Math. J. 71(2), 337–363 (1993)
29. 29.
Pinson, H., Spencer, T.: Universality and the two-dimensional Ising model, unpublishedGoogle Scholar
30. 30.
Priezzhev, V.B., Ruelle, P.: Boundary monomers in the dimer model. Phys. Rev. E 77, 061126 (2008)
31. 31.
Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 333(3), 239–244 (2001)
32. 32.
Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172(2), 1435–1467 (2010)
33. 33.
Spencer, T.: A mathematical approach to universality in two dimensions. Physica A 279, 250–259 (2000)
34. 34.
Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics—an exact result. Philos. Mag. 6(68), 1061–1063 (1961)
35. 35.
Temperley, H.N.V.: Enumeration of graphs on a large periodic lattice, combinatorics. In: The Proceedings of the British Combinatorical Conference, 1973, London Mathematical Society lecture note series, Vol. 13, Cambridge University Press, 1974Google Scholar
36. 36.
Tzeng, W., Wu, F.Y.: Dimers on a simple-quartic net with a vacancy. J. Stat. Phys. 110(3–6), 671–689 (2003)
37. 37.
Wu, F.Y.: Pfaffian solution of a dimer–monomer problem: single monomer on the boundary. Phys. Rev. E 74, 020104 (2006). Erratum: n. 039907(E)
38. 38.
Wu, F.Y., Tzeng, W., Izmailian, N.S.: Exact solution of a monomer-dimer problem: a single boundary monomer on a nonbipartite lattice. Phys. Rev. E 83, 011106 (2011)

© Springer Science+Business Media New York 2016

## Authors and Affiliations

• Alessandro Giuliani
• 1
• Ian Jauslin
• 2
• Elliott H. Lieb
• 3
1. 1.Dipartimento di Matematica e FisicaUniversità di Roma TreRomaItaly
2. 2.Dipartimento di FisicaSapienza Università di RomaRomaItaly
3. 3.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA