Journal of Statistical Physics

, Volume 162, Issue 6, pp 1522–1538 | Cite as

Resonant Equilibrium Configurations in Quasi-periodic Media: Perturbative Expansions

  • Rafael de la Llave
  • Xifeng SuEmail author
  • Lei Zhang


We consider 1-D quasi-periodic Frenkel–Kontorova models. We study the existence of equilibria whose frequency (i.e. the inverse of the density of deposited material) is resonant with the frequencies of the substratum. We study perturbation theory for small potential. We show that there are perturbative expansions to all orders for the quasi-periodic equilibria with resonant frequencies. Under very general conditions, we show that there are at least two such perturbative expansions for equilibria for small values of the parameter. We also develop a dynamical interpretation of the equilibria in these quasi-periodic media. We show that equilibria are orbits of a dynamical system which has very unusual properties. We obtain results on the Lyapunov exponents of the dynamical systems, i.e. the phonon gap of the resonant quasi-periodic equilibria. We show that the equilibria can be pinned even if the gap is zero.


Quasi-periodic Frenkel–Kontorova models Resonant frequencies Equilibria Quasicrystals Lindstedt series  Counterterms 

Mathematics Subject Classification

70K43 37J50 37J40 52C23 



We thank Dr. T. Blass and Mr. A.H. Salahshoor for discussions. R. L. and L. Z. have been supported by DMS-1500943. The hospitality of JLU-GT Joint institute for Theoretical Sciences for the three authors was instrumental in finishing the work. R.L also acknowledges the hospitality of the Chinese Acad. of Sciences and Beijing Normal Univ. X. Su is supported by both National Natural Science Foundation of China (Grant No. 11301513) and “the Fundamental Research Funds for the Central Universities”.


  1. 1.
    Braun, O.M., Kivshar, Y.S.: The Frenkel-Kontorova model. Texts and Monographs in Physics. Concepts, methods, and applications. Springer, Berli (2004)CrossRefGoogle Scholar
  2. 2.
    Selke, W.: Spatially modulated structures in systems with competing interactions. Phase Transitions and Critical Phenomena, pp. 1–72. Academic Press, London (1992)Google Scholar
  3. 3.
    Su, X., de la Llave, R.: KAM theory for quasi-periodic equilibria in 1D quasi-periodic media: II. Long-range interactions. J. Phys. A 45(5), 455203–455224 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Su, X., de la Llave, R.: KAM theory for quasi-periodic equilibria in one-dimensional quasi-periodic media. SIAM J. Math. Anal. 44(6), 3901–3927 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Blass, T., de la Llave, R.: The analyticity breakdown for Frenkel–Kontorova models in quasi-periodic media: numerical explorations. J. Stat. Phys. 150(6), 1183–1200 (2013)CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    de la Llave, R., Xifeng, S., Zhang, L.: Resonant equilibrium configurations in quasi-periodic media: KAM theory (2015)Google Scholar
  7. 7.
    van Erp, T.S., Fasolino, A.: Aubry transition studied by direct evaluation of the modulation functions of infinite incommensurate systems. Europhys. Lett. 59(3), 330–336 (2002)CrossRefADSGoogle Scholar
  8. 8.
    van Erp, T.S., Fasolino, A., Janssen, T.: Structural transitions and phonon localization in Frenkel Kontorova models with quasi-periodic potentials. Ferroelectrics 250, 421–424 (2001)CrossRefGoogle Scholar
  9. 9.
    van Erp, T.S., Fasolino, A., Radulescu, O., Janssen, T.: Pinning and phonon localization in Frenkel–Kontorova models on quasiperiodic substrates. Phys. Rev. B 60(9), 6522–6528 (1999)CrossRefADSGoogle Scholar
  10. 10.
    Federer, H.: Real flat chains, cochains and variational problems. Indiana Univ. Math. J. 24, 351–407 (1974/75)Google Scholar
  11. 11.
    Lions, P.-L., Souganidis, P.E.: Correctors for the homogenization of Hamilton–Jacobi equations in the stationary ergodic setting. Comm. Pure Appl. Math. 56(10), 1501–1524 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Aliste-Prieto, J.: Translation numbers for a class of maps on the dynamical systems arising from quasicrystals in the real line. Ergod. Theory Dyn. Syst. 30(2), 565–594 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Gambaudo, J.-M., Guiraud, P., Petite, S.: Minimal configurations for the Frenkel–Kontorova model on a quasicrystal. Commun. Math. Phys. 265(1), 165–188 (2006)CrossRefADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Garibaldi, E., Petite, S., Thieullen, P.: Discrete weak-kam methods for stationary uniquely ergodic setting. preprint, (2013)Google Scholar
  15. 15.
    Kunze, M., Ortega, R.: Twist mappings with non-periodic angles. Stability and Bifurcation Theory for Non-autonomous Differential Equations. Lecture Notes in Mathematics, pp. 265–300. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Qin, W., Wang, Y.: Invariant Circles and Depinning Transition. (2015)Google Scholar
  17. 17.
    Axel, F., Aubry, S.: Polarisation and transition by breaking of analyticity in a one-dimensional model for incommensurate structures in an electric field. J. Phys. A 20(14), 4873 (1987)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Fox, A.M., de la Llave, R.: Barriers to transport and mixing in volume-preserving maps with nonzero flux. Physica D 295296, 1–10 (2015)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    de la Llave, R.: KAM theory for equilibrium states in 1-D statistical mechanics models. Ann. Henri Poincaré 9(5), 835–880 (2008)CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Bücker, M., Corliss, G., Hovland, P., Naumann, U., Norris, B. (eds.): Automatic Differentiation: Applications, Theory, and Implementations. Lecture Notes in Computational Science and Engineering, vol. 50, Springer, Berlin (2006). Papers from the 4th international conference on automatic differentiation held in Chicago, IL, 20–24 July 2004Google Scholar
  22. 22.
    Haro, A.: Automatic Differentiation Methods in Computational Dynamical Systems: Invariant Manifolds and Normal Forms. Springer, London (2011)Google Scholar
  23. 23.
    Cartan, H.: Elementary Theory of Analytic Functions of One or Several Complex Variables. Dover Publications Inc., New York (1995). Translated from the French, Reprint of the 1973 editionGoogle Scholar
  24. 24.
    Dieudonné, J.: Infinitesimal Calculus. Hermann, Paris (1971). Translated from the FrenchGoogle Scholar
  25. 25.
    Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52(5), 264–379 (1979)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    Audin, M.: Hamiltonian Systems and Their Integrability, vol. 15, SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, (2008). Translated from the 2001 French original by Anna Pierrehumbert, Translation edited by Donald BabbittGoogle Scholar
  27. 27.
    Holm, D.D.: Geometric Mechanics. Part I. Dynamics and symmetry, 2nd edn. Imperial College Press, London (2011)CrossRefzbMATHGoogle Scholar
  28. 28.
    Souriau, J.-M.: Structure of Dynamical Systems. Progress in Mathematics, vo. 149, Birkhäuser Boston Inc, Boston, MA (1997). A symplectic view of physics, Translated from the French by C. H. Cushman-de Vries, Translation edited and with a preface by R. H. Cushman and G. M. TuynmanGoogle Scholar
  29. 29.
    Meyer, K.R.: Symmetries and integrals in mechanics. Dynamical Systems: Dynamical Systems: Proceedings of a Symposium Held at the University of Bahia, Salvador, 1971, pp. 259–272. Academic Press, New York (1973)Google Scholar
  30. 30.
    Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5(1), 121–130 (1974)CrossRefADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Marsden, J.E., Weinstein, A.: Comments on the history, theory, and applications of symplectic reduction. Quantization of Singular Symplectic Quotients. Progress in Mathematics, pp. 1–19. Birkhäuser, Basel (2001)CrossRefGoogle Scholar
  32. 32.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge (1995) With a supplementary chapter by Katok and Leonardo MendozaGoogle Scholar
  33. 33.
    Cortez, A.J.: Dynamics of diffeomorphisms of the torus. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.), University of California, Los Angeles (2002)Google Scholar
  34. 34.
    Casati, G., Proszen, T.: Mixing properties of triangular billiards. Phys. Rev. Lett. 89, 4729 (1999)CrossRefADSGoogle Scholar
  35. 35.
    Petrov, N.P., de la Llave, R., Vano, J.A.: Torus maps and the problem of a one-dimensional optical resonator with a quasiperiodically moving wall. Phys. D 180(3–4), 140–184 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Wang, J., Casati, G., Proszen, T.: Nonergodicity and localization of invariant measure for two colliding masses. Phys. Rev. E 89, 042918 (2014)CrossRefADSGoogle Scholar
  37. 37.
    de la Llave, R., Haro, A.: Spectral theory and dynamics. (2010) ManuscriptGoogle Scholar
  38. 38.
    Pastur, L., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1992)Google Scholar
  39. 39.
    Avila, A., Krikorian, R.: Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. Math. (2) 164(3), 911–940 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Aubry, S., MacKay, R.S., Baesens, C.: Equivalence of uniform hyperbolicity for symplectic twist maps and phonon gap for Frenkel–Kontorova models. Phys. D 56(2–3), 123–134 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Simon, B.: Kotani theory for one-dimensional stochastic Jacobi matrices. Commun. Math. Phys. 89(2), 227–234 (1983)CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.JLU-GT Joint Institute for Theoretical ScienceJilin UniversityChangchunPeople’s Republic of China
  3. 3.School of Mathematical SciencesBeijing Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations