Journal of Statistical Physics

, Volume 162, Issue 4, pp 813–823 | Cite as

Exponential Dephasing of Oscillators in the Kinetic Kuramoto Model

  • Dario Benedetto
  • Emanuele CagliotiEmail author
  • Umberto Montemagno


We study the kinetic Kuramoto model for coupled oscillators with coupling constant below the synchronization threshold. We manage to prove that, for any analytic initial datum, if the interaction is small enough, the order parameter of the model vanishes exponentially fast, and the solution is asymptotically described by a free flow. This behavior is similar to the phenomenon of Landau damping in plasma physics. In the proof we use a combination of techniques from Landau damping and from abstract Cauchy–Kowalewskaya theorem.


Kuramoto model Dephasing Landau damping Abstract Cauchy–Kowalewskaya theorem 

Mathematics Subject Classification

35A10 35Q92 74A25 76N10 92B25 


  1. 1.
    Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005)CrossRefADSGoogle Scholar
  2. 2.
    Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Études Sci. 122, 195–300 (2015)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bedrossian, J., Masmoudi, N., Mouhot, C. Landau damping: paraproducts and Gevrey regularity. arXiv:1311.2870, 2013
  4. 4.
    Benedetto, D., Caglioti, E., Montemagno, U.: Dephasing of Kuramoto oscillators in kinetic regime towards a fixed asymptotically free state. Rend. Mat. Appl. VII(35), 189–206 (2014)MathSciNetGoogle Scholar
  5. 5.
    Benedetto, D., Caglioti, E., Montemagno, U.: On the complete phase synchronization for the Kuramoto model in the mean-field limit. Commun. Math. Sci. 13(7), 1775–1786 (2015)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Caflish, R.E.: A simplified version of the abstract Cauchy-Kowalewski Theorem with weak singularities Bull. Am. Math. Soc. 23(2), 495–500 (1990)CrossRefGoogle Scholar
  7. 7.
    Caglioti, E., Maffei, C.: Time asymptotics for solutions of Vlasov-Poisson equation in a circle. J. Stat. Phys. 92(1–2), 301–323 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Carrillo, J.A., Choi, Y.P., Ha, S.Y., Kang, M.J., Kim, Y.: Contractivity of transport distances for the kinetic Kuramoto equation. J. Stat. Phys. 156(2), 395–415 (2014)CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Chiba, H.: A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model. Ergod. Theory Dyn. Syst. 35, 762–834 (2015)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Choi, Y.P., Ha, S.Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D 241(7), 735–754 (2012)CrossRefADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Dietert, H. Stability and bifurcation for the Kuramoto model. arXiv:1411.3752 (2014)
  12. 12.
    Dong, J.G., Xue, X.: Synchronization analysis of Kuramoto oscillators. Commun. Math. Sci. 11(2), 465–480 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Faou, E., Rousset, F.: Landau damping in Sobolev spaces for the Vlasov-HMF model. Arch. Ration. Mech. Anal. (2015). doi: 10.1007/s00205-015-0911-9
  14. 14.
    Fernandez B., Gérard-Varet D., and Giacomin G. Landau damping in the Kuramoto model. arXiv:1410.6006 (2014)
  15. 15.
    Ha, S.Y., Ha, T., Kim, J.H.: On the complete synchronization of the Kuramoto phase model. Phys. D 239(17), 1692–1700 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Hwang, H.J., Velázquez, J.J.L.: On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem. Indiana Univ. Math. J 58, 2623–2660 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol. 39, pp. 420–422. Springer, Berlin Heidelberg (1975)CrossRefGoogle Scholar
  18. 18.
    Lancellotti, C.: On the Vlasov limit for systems of nonlinearly coupled oscillators without noise. Transp. Theory Stat. Phys. 34(7), 523–535 (2005)CrossRefADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Mirollo, R.E.: The asymptotic behavior of the order parameter for the infinite-N Kuramoto model. Chaos: An Interdisciplinary. J. Nonlinear Sci. 22(4), 043118 (2012)MathSciNetGoogle Scholar
  20. 20.
    Mirollo, R., Strogatz, S.H.: The Spectrum of the Partially Locked State for the Kuramoto Model. J. Nonlinear Sci. 17(4), 309–347 (2007)CrossRefADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207(1), 29–201 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143(1–4), 1–20 (2000). Bifurcations, patterns and symmetryCrossRefADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    Strogatz, S.H., Mirollo, R.E.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63(3–4), 613–635 (1991)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Strogatz, S.H., Mirollo, R.E., Matthews, P.C.: Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping. Phys. Rev. Lett. 68, 2730–2733 (1992)CrossRefADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Dario Benedetto
    • 1
  • Emanuele Caglioti
    • 1
    Email author
  • Umberto Montemagno
    • 1
  1. 1.Dipartimento di MatematicaSapienza Università di RomaRomeItaly

Personalised recommendations