Advertisement

Journal of Statistical Physics

, Volume 162, Issue 2, pp 334–370 | Cite as

Interface Dynamics of a Metastable Mass-Conserving Spatially Extended Diffusion

  • Nils BerglundEmail author
  • Sébastien Dutercq
Article

Abstract

We study the metastable dynamics of a discretised version of the mass-conserving stochastic Allen–Cahn equation. Consider a periodic one-dimensional lattice with N sites, and attach to each site a real-valued variable, which can be interpreted as a spin, as the concentration of one type of metal in an alloy, or as a particle density. Each of these variables is subjected to a local force deriving from a symmetric double-well potential, to a weak ferromagnetic coupling with its nearest neighbours, and to independent white noise. In addition, the dynamics is constrained to have constant total magnetisation or mass. Using tools from the theory of metastable diffusion processes, we show that the long-term dynamics of this system is similar to a Kawasaki-type exchange dynamics, and determine explicit expressions for its transition probabilities. This allows us to describe the system in terms of the dynamics of its interfaces, and to compute an Eyring–Kramers formula for its spectral gap. In particular, we obtain that the spectral gap scales like the inverse system size squared.

Keywords

Metastability Kramers’ law Stochastic exit problem Allen–Cahn equation Kawasaki dynamics Interface Spectral gap 

Mathematics Subject Classification

Primary 60J60 60K35 Secondary 82C21 82C24 

Notes

Acknowledgments

The idea of studying the constrained process considered in this work goes back to a question Erwin Bolthausen asked after a talk given in Zürich by the first author on the unconstrained model studied in [6, 7].

References

  1. 1.
    Antonopoulou, D.C., Bates, P.W., Blömker, D., Karali, G.D.: Motion of a droplet for the mass-conserving stochastic Allen–Cahn equation. Preprint arXiv:1501.05288
  2. 2.
    Barret, F.: Sharp asymptotics of metastable transition times for one dimensional SPDEs. Ann. Inst. Henri Poincaré Probab. Stat. 51(1), 129–166 (2015)zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Barret, F., Bovier, A., Méléard, S.: Uniform estimates for metastable transition times in a coupled bistable system. Electron. J. Probab. 15(12), 323–345 (2010)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Berglund, N.: Kramers’ law: validity, derivations and generalisations. Markov Process. Relat. Fields 19(3), 459–490 (2013)MathSciNetGoogle Scholar
  5. 5.
    Berglund, N., Dutercq, S.: The Eyring–Kramers law for Markovian jump processes with symmetries. J. Theor. Probab. Online First:1–40 (2015)Google Scholar
  6. 6.
    Berglund, N., Fernandez, B., Gentz, B.: Metastability in interacting nonlinear stochastic differential equations I: from weak coupling to synchronization. Nonlinearity 20(11), 2551–2581 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Berglund, N., Fernandez, B., Gentz, B.: Metastability in interacting nonlinear stochastic differential equations II: large-\({N}\) behaviour. Nonlinearity 20(11), 2583–2614 (2007)zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Berglund, N., Gentz, B.: The Eyring-Kramers law for potentials with nonquadratic saddles. Markov Process. Relat. Fields 16, 549–598 (2010)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Berglund, N., Gentz, B.: Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers’ law and beyond. Electron. J. Probab. 18(24), 58 (2013)MathSciNetGoogle Scholar
  10. 10.
    Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6(4), 399–424 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Bovier, A., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. (JEMS) 7(1), 69–99 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Cameron, M., Vanden-Eijnden, E.: Flows in complex networks: theory, algorithms, and application to Lennard-Jones cluster rearrangement. J. Stat. Phys. 156(3), 427–454 (2014)zbMATHMathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Deif, A.S.: Rigorous perturbation bounds for eigenvalues and eigenvectors of a matrix. J. Comput. Appl. Math. 57(3), 403–412 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    den Hollander, F.: Metastability under stochastic dynamics. Stoch. Process. Appl. 114(1), 1–26 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    den Hollander, F., Jansen, S.: Metastability at low temperature for continuum interacting particle systems (In preparation)Google Scholar
  16. 16.
    Dutercq, S.: Metastability in reversible diffusion processes invariant under a symmetry group (in preparation)Google Scholar
  17. 17.
    Dutercq, S.: Métastabilité dans les systèmes avec loi de conservation. PhD thesis, Université d’Orléans (2015)Google Scholar
  18. 18.
    Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)CrossRefADSGoogle Scholar
  19. 19.
    Flatley, L., Theil, F.: Face-centered cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 218(1), 363–416 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, 2nd edn. Springer, New York (1998)zbMATHCrossRefGoogle Scholar
  21. 21.
    Golub, G.H., Van Loan, C.F.: Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013)Google Scholar
  22. 22.
    Hun, K.: Metastability in interacting nonlinear stochastic differential equations. Master’s thesis, Université d’Orléans (2009)Google Scholar
  23. 23.
    Jansen, S., Jung, P.: Wigner crystallization in the quantum 1D jellium at all densities. Commun. Math. Phys. 331(3), 1133–1154 (2014)zbMATHMathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47(3), 556–572 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)zbMATHMathSciNetCrossRefADSGoogle Scholar
  26. 26.
    Mourrat, J.-C., Weber, H.: Convergence of the two-dimensional dynamic Ising-Kac model to \(\Phi _2^4\). Preprint arXiv:1410.1179 (2014)
  27. 27.
    Olivieri, E., Vares, M.E.: Large deviations and metastability. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2005)Google Scholar
  28. 28.
    Otto, F., Weber, H., Westdickenberg, M.G.: Invariant measure of the stochastic Allen-Cahn equation: the regime of small noise and large system size. Electron. J. Probab. 19(23), 76 (2014)MathSciNetGoogle Scholar
  29. 29.
    Rubinstein, J., Sternberg, P.: Nonlocal reaction-diffusion equations and nucleation. IMA J. Appl. Math. 48(3), 249–264 (1992)zbMATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Serre, J.-P.: Linear Representations of Finite Groups. Springer, New York (1977). Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42zbMATHCrossRefGoogle Scholar
  31. 31.
    Vanden-Eijnden, E., Westdickenberg, M.G.: Rare events in stochastic partial differential equations on large spatial domains. J. Stat. Phys. 131(6), 1023–1038 (2008)zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Université d’Orléans, Laboratoire Mapmo, CNRS, UMR 7349, Fédération Denis Poisson, FR 2964, Bâtiment de MathématiquesOrléans Cedex 2France

Personalised recommendations