Advertisement

Journal of Statistical Physics

, Volume 161, Issue 5, pp 1236–1267 | Cite as

The Average Field Approximation for Almost Bosonic Extended Anyons

  • Douglas Lundholm
  • Nicolas RougerieEmail author
Article

Abstract

Anyons are 2D or 1D quantum particles with intermediate statistics, interpolating between bosons and fermions. We study the ground state of a large number N of 2D anyons, in a scaling limit where the statistics parameter \(\alpha \) is proportional to \(N ^{-1}\) when \(N\rightarrow \infty \). This means that the statistics is seen as a “perturbation from the bosonic end”. We model this situation in the magnetic gauge picture by bosons interacting through long-range magnetic potentials. We assume that these effective statistical gauge potentials are generated by magnetic charges carried by each particle, smeared over discs of radius R (extended anyons). Our method allows to take \(R\rightarrow 0\) not too fast at the same time as \(N\rightarrow \infty \). In this limit we rigorously justify the so-called “average field approximation”: the particles behave like independent, identically distributed bosons interacting via a self-consistent magnetic field.

Keywords

Anyons Fractional statistics Magnetic interaction Mean-field theory Quantum de Finetti theorem 

Notes

Acknowledgments

We thank Michele Correggi for discussions. Part of this work has been carried out during visits at the Institut Henri Poincaré (Paris) and the Institut Mittag-Leffler (Stockholm). D. L. would also like to thank LPMMC Grenoble for kind hospitality. We acknowledge financial support from the French ANR (Project Mathosaq ANR-13-JS01-0005-01), as well as the grant KAW 2010.0063 from the Knut and Alice Wallenberg Foundation and the Swedish Research Council Grant No. 2013-4734.

References

  1. 1.
    Arovas, D., Schrieffer, J., Wilczek, F.: Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984)CrossRefADSGoogle Scholar
  2. 2.
    Bhatia, R.: Matrix Analysis, vol. 169. Springer, Berlin (1997)zbMATHGoogle Scholar
  3. 3.
    Chen, X., Smith, P.: On the unconditional uniqueness of solutions to the infinite radial Chern–Simons–Schrödinger hierarchy. Anal. PDE 7, 1683–1712 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Y.H., Wilczek, F., Witten, E., Halperin, B.I.: On anyon superconductivity. Int. J. Mod. Phys. B 3, 1001–1067 (1989)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Chiribella, G.: On quantum estimation, quantum cloning and finite quantum de Finetti theorems. Theory of Quantum Computation, Communication, and Cryptography. Lecture Notes in Computer Science, vol. 6519. Springer, Berlin (2011)Google Scholar
  6. 6.
    Chitra, R., Sen, D.: Ground state of many anyons in a harmonic potential. Phys. Rev. B 46, 10923–10930 (1992)CrossRefADSGoogle Scholar
  7. 7.
    Choi, M.Y., Lee, C., Lee, J.: Soluble many-body systems with flux-tube interactions in an arbitrary external magnetic field. Phys. Rev. B 46, 1489–1497 (1992)CrossRefADSGoogle Scholar
  8. 8.
    Christandl, M., König, R., Mitchison, G., Renner, R.: One-and-a-half quantum de Finetti theorems. Commun. Math. Phys. 273(2), 473–498 (2007)CrossRefADSzbMATHMathSciNetGoogle Scholar
  9. 9.
    Comtet, A., McCabe, J., Ouvry, S.: Perturbative equation of state for a gas of anyons. Phys. Lett. B 260, 372–376 (1991)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Comtet, A., Mashkevich, S., Ouvry, S.: Magnetic moment and perturbation theory with singular magnetic fields. Phys. Rev. D 52, 2594–2597 (1995)CrossRefADSGoogle Scholar
  11. 11.
    Correggi, M., Pinsker, F., Rougerie, N., Yngvason, J.: Critical rotational speeds for superfluids in homogeneous traps. J. Math. Phys. 53, 095203 (2012)MathSciNetCrossRefADSzbMATHGoogle Scholar
  12. 12.
    Erdős, L., Vougalter, V.: Pauli operator and Aharonov–Casher theorem for measure valued magnetic fields. Commun. Math. Phys. 225, 399–421 (2002)CrossRefADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    Fetter, A.L., Hanna, C.B., Laughlin, R.B.: Random-phase approximation in the fractional-statistics gas. Phys. Rev. B 39, 9679–9681 (1989)CrossRefADSGoogle Scholar
  14. 14.
    Fournais, S., Helffer, B.: Spectral methods in surface superconductivity. Progress in Nonlinear Differential Equations and their Applications, vol. 77. Birkhäuser Boston Inc., Boston (2010)zbMATHGoogle Scholar
  15. 15.
    Fröhlich, J.: Quantum statistics and locality. In: Proceedings of the Gibbs Symposium (New Haven, 1989), pp. 89–142. American Mathematical Society, Providence (1990)Google Scholar
  16. 16.
    Goerbig, M.O.: Quantum Hall effects (2009).arXiv:0909.1998
  17. 17.
    Harrow, A.: The church of the symmetric subspace (2013). arXiv:1308.6595
  18. 18.
    Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A., Tidblom, J.: Many-particle Hardy Inequalities. J. Lond. Math. Soc. 77, 99–114 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Iengo, R., Lechner, K.: Anyon quantum mechanics and Chern–Simons theory. Phys. Rep. 213, 179–269 (1992)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Khare, A.: Fractional Statistics and Quantum Theory, 2nd edn. World Scientific, Singapore (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Kinoshita, T., Wenger, T., Weiss, D.S.: Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004)CrossRefADSGoogle Scholar
  22. 22.
    Laughlin, R.B.: Nobel lecture: fractional quantization. Rev. Mod. Phys. 71, 863–874 (1999)MathSciNetCrossRefADSzbMATHGoogle Scholar
  23. 23.
    Lerda, A.: Anyons. Springer, Berlin (1992)zbMATHGoogle Scholar
  24. 24.
    Lewin, M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lewin, M., Nam, P. T., Rougerie, N.: The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases (2014).arXiv:1405.3220
  27. 27.
    Lewin, M., Nam, P.T., Rougerie, N.: Remarks on the quantum de Finetti theorem for bosonic systems. Appl. Math. Res. Express 1, 48–63 (2014)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130(2), 1605–1616 (1963)MathSciNetCrossRefADSzbMATHGoogle Scholar
  29. 29.
    Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)zbMATHGoogle Scholar
  30. 30.
    Lieb, E.H., Seiringer, R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264(2), 505–537 (2006)MathSciNetCrossRefADSzbMATHGoogle Scholar
  31. 31.
    Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Oberwolfach Seminars. Birkhäuser, Basel (2005)zbMATHGoogle Scholar
  32. 32.
    Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61(4), 043602 (2000)CrossRefADSGoogle Scholar
  33. 33.
    Lundholm, D.: Geometric extensions of many-particle Hardy inequalities. J. Phys. A 48, 175203 (2015)MathSciNetCrossRefADSzbMATHGoogle Scholar
  34. 34.
    Lundholm, D., Solovej, J.P.: Hardy and Lieb-Thirring inequalities for anyons. Commun. Math. Phys. 322, 883–908 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  35. 35.
    Lundholm, D., Solovej, J.P.: Local exclusion principle for identical particles obeying intermediate and fractional statistics. Phys. Rev. A 88, 062106 (2013)CrossRefADSGoogle Scholar
  36. 36.
    Lundholm, D., Solovej, J.P.: Local exclusion and Lieb-Thirring inequalities for intermediate and fractional statistics. Ann. Henri Poincaré 15, 1061–1107 (2014)MathSciNetCrossRefADSzbMATHGoogle Scholar
  37. 37.
    Lundholm, D., Svensson, L.: Clifford algebra, geometric algebra, and applications, KTH (2009). arXiv:0907.5356
  38. 38.
    Mashkevich, S.: Finite-size anyons and perturbation theory. Phys. Rev. D 54, 6537–6543 (1996)CrossRefADSGoogle Scholar
  39. 39.
    Myrheim, J.A.: Aspects topologiques de la physique en basse dimension. Topological aspects of low dimensional systems. In: Comtet, A., Jolicœur, T., Ouvry, S., David, F. (eds.) Les Houches–Ecole d’Ete de Physique Theorique, vol. 69, pp. 265–413. Springer, Berlin (1999)Google Scholar
  40. 40.
    Nam, P. T., Rougerie, N., Seiringer, R.: Ground states of large Bose systems: the Gross–Pitaevskii limit revisited (2015). arXiv:1503.07061
  41. 41.
    Ouvry, S.: \(\delta \)-Perturbative interactions in the Aharonov–Bohm and anyons models. Phys. Rev. D 50, 5296–5299 (1994)CrossRefADSGoogle Scholar
  42. 42.
    Ouvry, S.: Anyons and lowest Landau level anyons. Sémin. Poincaré 11, 77–107 (2007)zbMATHGoogle Scholar
  43. 43.
    Paredes, B., et al.: Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004)CrossRefADSGoogle Scholar
  44. 44.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional analysis. Academic Press, New York (1972)zbMATHGoogle Scholar
  45. 45.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press, New York (1975)zbMATHGoogle Scholar
  46. 46.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)zbMATHGoogle Scholar
  47. 47.
    Rougerie, N.: De Finetti Theorems, Mean-Field Limits and Bose–Einstein Condensation. Lecture Notes (2015)Google Scholar
  48. 48.
    Sen, D.: Quantum and statistical mechanics of anyons. Nuclear Phys. B 630, 397–408 (1991)CrossRefADSMathSciNetGoogle Scholar
  49. 49.
    Sen, D., Chitra, R.: Anyons as perturbed bosons. Phys. Rev. B 45, 881–894 (1992)CrossRefADSGoogle Scholar
  50. 50.
    Trugenberger, C.: Ground state and collective excitations of extended anyons. Phys. Lett. B 288, 121–128 (1992)CrossRefADSGoogle Scholar
  51. 51.
    Trugenberger, C.: The anyon fluid in the Bogoliubov approximation. Phys. Rev. D 45, 3807–3817 (1992)MathSciNetCrossRefADSGoogle Scholar
  52. 52.
    Westerberg, E.: Mean field approximation for anyons in a magnetic field. Int. J. Mod. Phys. B 7, 2177–2199 (1993)CrossRefADSGoogle Scholar
  53. 53.
    Wilczek, F.: Fractional Statistics and Anyon Superconductivity. World Scientific, Singapore (1990)CrossRefzbMATHGoogle Scholar
  54. 54.
    Zhang, S.C.: The Chern–Simons–Landau–Ginzburg theory of the fractional quantum Hall effect. Int. J. Mod. Phys. B 6, 25–58 (1992)CrossRefADSMathSciNetGoogle Scholar
  55. 55.
    Zhang, S.C., Hansson, T.H., Kivelson, S.: Effective-field-theory model for the fractional quantum Hall effect. Phys. Rev. Lett. 62, 82–85 (1989)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsKTH Royal Institute of TechnologyStockholmSweden
  2. 2.CNRS & Université Grenoble Alpes, LPMMC (UMR 5493)GrenobleFrance

Personalised recommendations