Advertisement

Journal of Statistical Physics

, Volume 161, Issue 5, pp 1268–1275 | Cite as

Relativistic Bohmian Mechanics Without a Preferred Foliation

  • Bruno GalvanEmail author
Article

Abstract

In non-relativistic Bohmian mechanics the universe is represented by a probability space whose sample space is composed of the Bohmian trajectories. In relativistic Bohmian mechanics an entire class of empirically equivalent probability spaces can be defined, one for every foliation of spacetime. In the literature the hypothesis has been advanced that a single preferred foliation is allowed, and that this foliation derives from the universal wave function by means of a covariant law. In the present paper the opposite hypothesis is advanced, i.e., no law exists for the foliations and therefore all the foliations are allowed. The resulting model of the universe is basically the “union” of all the probability spaces associated with the foliations. This hypothesis is mainly motivated by the fact that any law defining a preferred foliation is empirically irrelevant. It is also argued that the absence of a preferred foliation may reduce the well known conflict between Bohmian mechanics and relativity.

Keywords

Bohmian mechanics de Broglie–Bohm theory Relativistic Bohmian mechanics Hypersurface Bohm–Dirac models Typicality Non-probabilistic typicality 

References

  1. 1.
    Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: On the common structure of Bohmian mechanics and the Ghirardi–Rimini–Weber theory. Brit. J. Philos. Sci. 59, 353–389 (2008). arXiv:quant-ph/0603027
  2. 2.
    Berndl, K., Dürr, D., Goldstein, S., Zanghì, N.: Nonlocality, Lorentz invariance, and Bohmian quantum theory. Phys. Rev. A 53, 2062–2073 (1996). arXiv:quant-ph/9510027
  3. 3.
    Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, New York (1993)Google Scholar
  4. 4.
    Dürr, D., Goldstein, S., Münch-Berndl, K., Zanghì, N.: Hypersurface Bohm–Dirac models. Phys. Rev. A 60, 2729–2736 (1999). arXiv:quant-ph/9801070
  5. 5.
    Dürr, D., Goldstein, S., Norsen, T., Struyve, W., Zanghì, N.: Can Bohmian mechanics be made relativistic? Proc. Roy. Soc. A 470, 20130699 (2013). arXiv:1307.1714 CrossRefGoogle Scholar
  6. 6.
    Dürr, D., Goldstein, S., Zanghì, N.: Quantum Physics Without Quantum Philosophy. Springer, Berlin (2013)CrossRefGoogle Scholar
  7. 7.
    Dürr, D., Goldstein, S., Zanghì, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Statist. Phys. 67, 843-907 (1992). arXiv:quant-ph/0308039
  8. 8.
    Dürr, D., Teufel, S.: Bohmian Mechanics. Springer, Berlin (2009)zbMATHGoogle Scholar
  9. 9.
    Galvan, B.: Generalization of the Born rule. Phys. Rev. A 78, 042113 (2008). arXiv:0806.4935 CrossRefADSGoogle Scholar
  10. 10.
    Goldstein, S.: Boltzmann’s approach to statistical mechanics. In: Bricmont, J., Dürr, D., Galavotti, M. C., Ghirardi, G., Petruccione, F., Zanghí, N. (eds.): Chance in Physics: Foundations and Perspectives, pp. 39–54. Lecture notes in Physics 574. Springer Berlin (2001). arXiv:cond-mat/0105242
  11. 11.
    Goldstein, S.: Typicality and notions of probability in physics. In: Ben-Menahem, Y., Hemmo, M. (eds.) Probability in Physics, pp. 59–71. Springer, Berlin (2012)CrossRefGoogle Scholar
  12. 12.
    Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  13. 13.
    Huber, P.J.: Robust Statistics. Wiley, New York (1981)CrossRefzbMATHGoogle Scholar
  14. 14.
    Maudlin, T.: Space-Time in the Quantum World. In: Cushing, J.T., Fine, A., Goldstein, S. (eds.) Bohmian Mechanics and Quantum Theory: An Appraisal. Kluwer Academic, Dordrecht (1996)Google Scholar
  15. 15.
    Shafer, G.: From Cournots principle to market efficiency. In: Touffut, J. P. (ed.) Augustin Cournot: Modelling Economics. Edward Elgar (2007) http://www.glennshafer.com

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.TrentoItaly

Personalised recommendations