Journal of Statistical Physics

, Volume 161, Issue 1, pp 250–272 | Cite as

To Each His Own

Reproductive Strategies and Success of Three Common Planarian Species: Schmidtea mediterranea, Dugesia japonica, and Dugesia tigrina
  • Jason A. Carter
  • Christine H. Lind
  • M. Phuong Truong
  • Eva-Maria S. CollinsEmail author


Planarians are among the most complex animals with the ability to regenerate complete organisms from small tissue pieces. This ability allows them to reproduce by splitting themselves into a head and a tail piece, making them a rare example of asexual reproduction via transverse fission in multi-cellular organisms. Due to the stochastic nature of long reproductive cycles, which range from days to months, few and primarily qualitative studies have been conducted to understand the reproductive behaviors of asexual planarians. We have executed the largest long-term study on planarian asexual reproduction to date, tracking more than 23,000 reproductive events of three common planarian species found in Europe, North America, and Asia, respectively: Schmidtea mediterranea, Dugesia tigrina, and Dugesia japonica. This unique data collection allowed us to perform a detailed statistical analysis of their reproductive strategies. Since the three species share a similar anatomy and mode of reproduction by transverse division, we were surprised to find that each species had acquired its own distinct strategy for optimizing its reproductive success. We statistically examined each strategy, associated trade-offs, and the potential regulatory mechanisms on the population level. Interestingly, models for cell cycle length regulation in unicellular organisms could be directly applied to describe reproductive cycle lengths of planarians, despite the difference in underlying biological mechanisms. Finally, we examined the ecological implications of each strategy through intra- and inter-species competition experiments and found that D. japonica outcompeted the other two species due to its relatively equal distribution of resources on head and tail pieces, its cannibalistic behaviors and ability to thrive in crowded environments. These results show that this species would pose a serious threat to endogenous planarian populations if accidentally introduced in their habitats.


Planarians Asexual reproductive strategies Fission Fragmentation  Size control 



The authors thank Olivier Cochet-Escartin for Supplemental Movie 1 and helpful comments on the manuscript, Danielle Hagstrom for manuscript suggestions, and My Du Dang for help with worm maintenance and imaging. This research was funded by the Burroughs Wellcome Fund CASI Award, and the Alfred P. Sloan Fellowship (to E.-M.S.C.). J.A.C was partially supported by the Ledell Family Scholarship.

Supplementary material

10955_2015_1310_MOESM1_ESM.tex (7 kb)
Supplementary material 1 (tex 7 KB)
10955_2015_1310_MOESM2_ESM.png (118 kb)
Supplementary material 2 (png 117 KB)
10955_2015_1310_MOESM3_ESM.png (393 kb)
Supplementary material 3 (png 392 KB)
10955_2015_1310_MOESM4_ESM.png (195 kb)
Supplementary material 4 (png 195 KB)
10955_2015_1310_MOESM5_ESM.png (49 kb)
Supplementary material 5 (png 49 KB)

Supplementary material 6 (mp4 14891 KB)

10955_2015_1310_MOESM7_ESM.mp4 (9.4 mb)
Supplementary material 7 (mp4 9605 KB)

Supplementary material 8 (mp4 11002 KB)

Supplementary material 9 (mp4 7112 KB)


  1. 1.
    Abril, J.F., Cebria, F., Rodriguez-Esteban, G., Horn, T., Fraguas, S., Calvo, B., Bartscherer, K., Salo, E.: Smed454 dataset: unraveling the transcriptome of Schmidtea mediterranea. BMC Genom. 11(731), 1–19 (2010)Google Scholar
  2. 2.
    Armstrong, J.T.: The population dynamics of the planarian Dugesia tigrina. ESA 45, 361–365 (1964)Google Scholar
  3. 3.
    Baguna, J., Carranza, S., Pala, M., Ribera, C., Giribet, G., Arnedo, M.A., Ribas, M., Riutort, M.: From morphology and karyology to molecules. New methods for taxonomical identification of asexual populations of freshwater planarians. A tribute to Professor Mario Benazzi. Ital. J. Zool. 66, 207–214 (1999)CrossRefGoogle Scholar
  4. 4.
    Benazzi, M., Baguna, J., Ballester, R., Puccinelli, I., Del Papa, R.: Further contribution to the taxonomy of the “Dugesia lugubris-polychroa group” with description of Dugesia mediterranea n. sp. (Tricladida, Paludicola). Boll. Zool. 42, 81–89 (1975)CrossRefGoogle Scholar
  5. 5.
    Best, J., Riegel, V., Abelein, M.: Cephalic mechanism for social control of fission in planarians. J. Neurobiol. 5, 421–442 (1974)CrossRefGoogle Scholar
  6. 6.
    Campos, M., Surovtsev, I.V., Kato, S., Paintdakhi, A., Beltran, B., Ebmeier, S.E., Jacobs-Wagner, C.: A constant size extension drives bacterial cell size homeostatis. Cell 159, 1433–1446 (2014)CrossRefGoogle Scholar
  7. 7.
    Cash, K., McKee, M., Wrona, F.: Short-term and long-term consequences of grouping and group foraging in the free-living flatworm Dugesia tigrina. J. Anim. Ecol. 62, 529–535 (1993)CrossRefGoogle Scholar
  8. 8.
    Cebria, F., Newmark, P.A.: Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture. Development 132, 3691–3703 (2005)CrossRefGoogle Scholar
  9. 9.
    Davison, John: Population Growth in Planaria Dugesia Tigrina. J. Gen. Physiol. 61, 767–785 (1973)CrossRefGoogle Scholar
  10. 10.
    De Vries, E.J., Bagufla, J., Ball, I.R.: Chromosomal polymorphism in planarians (Turbellaria, Tricladida) and the plate tectonics of the western Mediterranean. Genetica 62, 187–191 (1984)CrossRefGoogle Scholar
  11. 11.
    Di Talia, S., Skotheim, J.M., Bean, J.M., Siggia, E.D., Cross, F.R.: The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448, 947–951 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Dunkel, J., Talbot, J., Schötz, E.M.: Memory and obesity affect the population dynamics of asexual freshwater planarians. Phys. Biol. 8(2), 026003 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Fantes, P.A.: Control of cell size and cycle time in Schizosaccharomyces pombe. J. Cell Sci. 24, 51–67 (1977)Google Scholar
  14. 14.
    Gee, H., Pickavance, J.R., Young, J.O.: A comparative study of the population biology of the American immigrant triclad Dugesia tigrina (Girard) in two British lakes. Hydrobiologia 361, 135–143 (1998)CrossRefGoogle Scholar
  15. 15.
    Godfray, H.C.J., Patride, L., Harvey, P.H.: Clutch Size. Annu. Rev. Ecol. 22, 409–429 (1991)CrossRefGoogle Scholar
  16. 16.
    Hirshfield, M.F., Tinkle, D.W.: Natural selection and the evolution of reproductive effort. Proc. Natl. Acad. Sci. USA 72(6), 2227–2231 (1975)ADSCrossRefGoogle Scholar
  17. 17.
    Iyer-Biswas, S., Wright, C.S., Henry, J.T., Lo, K., Burov, S., Lin, Y., Crooks, G.E., Crosson, S., Dinner, A.R., Scherer, N.F.: Scaling laws governing stochastic growth and division of single bacterial cells. Proc. Natl. Acad. Sci. USA 111(45), 15912–15917 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Jun, S., Taheri-Araghi, S.: Cell-size maintenance: universal strategy revealed. Trends Microbiol. 23(1), 4–6 (2014)CrossRefGoogle Scholar
  19. 19.
    Kawakatsu, M.: An experimental study of the life-history of Japanese freshwater planaria, p. vivida (ijima et kaburaki), with special reference to the fragmentation. Bull Kyoto Gakugei Univ. Ser. B 14, 35–39 (1959)Google Scholar
  20. 20.
    Kenk, R.: Sexual and asexual reproduction in Euplanaria tigrina (Girard). Biol. Bull. 73(2), 280–294 (1937)CrossRefGoogle Scholar
  21. 21.
    Morita, M., Best, J.B.: Effects of photoperiods and melatonin on planarian asexual reproduction. J. Exp. Zool. 231, 273–282 (1984)CrossRefGoogle Scholar
  22. 22.
    Newmark, P.A., Alvarado, A.S.: Not your father’s planarian: a classic model enters the era of functional genomics. Nat. Rev. Genet. 3(3), 210–219 (2002)CrossRefGoogle Scholar
  23. 23.
    Oki, I., Tamura, S., Yamayoshi, T., Aand Kawa-Katsu, M.: Karyological and taxonomic studies of DugesiajaponicaIchikawa et Kawakatsu in the Far East. Hydrobiologia 84, 53–68 (1981)CrossRefGoogle Scholar
  24. 24.
    Pringle, J., Hartwell, L.: The Saccharomyces cerevisiae cell cycle. In: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance. Cold Spring Harbor Monograph 11 (1981)Google Scholar
  25. 25.
    Quinodoz, S., Thomas, M.A., Dunkel, J., Schötz, E.M.: The more the merrier? J. Stat. Phys. 142(6), 1324–1336 (2011)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Root, R.B.: An estimate of the intrinsic rate of natural increase in the planarian, Dugesia tigrina. Ecology 41, 369–372 (1960)CrossRefGoogle Scholar
  27. 27.
    Sheiman, I.M., Sedelnikov, Z.V., Shkutin, M.F., Kreshchenko, N.D.: Asexual reproduction of planarians: metric studies. Russian J. Dev. Biol. 37, 102–107 (2006)CrossRefGoogle Scholar
  28. 28.
    Sinervo, B., Doughty, P., Huey, R., Zamudio, K.: Allometric engineering: a causal analysis of natural selection on offspring size. Science 258, 1927–1931 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    Sinervo, B., Licht, P.: Proximate constraints on the evolution of egg size, number and total clutch mass in lizards. Science 252, 1300–1302 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    Smith, C.C., Fretwell, S.D.: The optimal balance between size and number of offspring. Am. Nat. 108(962), 499–506 (1974)CrossRefGoogle Scholar
  31. 31.
    Smith, H.G., Kallander, H., Nilsson, J.A.: The trade-off between offspring number and quality in the great tit parus major. J. Anim. Ecol. 58(2), 383–401 (1989)CrossRefGoogle Scholar
  32. 32.
    Stearns, S.: The Evolution of Life Histories. Oxford University Press, London (1992)Google Scholar
  33. 33.
    Stearns, S.: Life-history tactics: a review of the ideas. Q. Rev. Biol. 51, 3–47 (1976)CrossRefGoogle Scholar
  34. 34.
    Sveiczer, A., Novak, B., Mitchison, J.: The size control of fission yeast revisited. J. Cell Sci. 109, 2947–2957 (1996)Google Scholar
  35. 35.
    Taheri-Araghi, S., Bradde, S., Sauls, J.T., Hill, N.S., Levin, P.A., Paulsson, J., Vergassola, M., Suckjoon, J.: Cell-size control and homeostasis in bacteria. Curr. Biol. 25, 385–391 (2015)CrossRefGoogle Scholar
  36. 36.
    Thomas, M.A., Schötz, E.-M.: SAPling: a scan-add-print barcoding database system to label and track asexual organisms. J. Exp. Biol. 214(21), 3518–3523 (2011)CrossRefGoogle Scholar
  37. 37.
    Thomas, M.A., Quinodoz, S., Schötz, E.M.: Size matters!. J. Stat. Phys. 148, 664–676 (2012)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Turner, J.J., Ewald, J.C., Skotheim, J.M.: Cell size control in yeast. Curr. Biol. 22, 350–359 (2012)CrossRefGoogle Scholar
  39. 39.
    Wagner, D.E., Wang, I.E., Reddien, P.W.: Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332, 811–816 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Yoshizawa, Y., Wakabayashi, K., Shinozawa, T.: Inhibition of planarian regeneration by melatonin. Hydrobiologia 227, 31–40 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of BiologyUC San DiegoSan DiegoUSA
  2. 2.Department of PhysicsUC San DiegoSan DiegoUSA

Personalised recommendations