Journal of Statistical Physics

, Volume 160, Issue 5, pp 1432–1448 | Cite as

A Complexity Approach to the Soliton Resolution Conjecture

  • Claudio BonannoEmail author


The soliton resolution conjecture is one of the most interesting open problems in the theory of nonlinear dispersive equations. Roughly speaking it asserts that a solution with generic initial condition converges to a finite number of solitons plus a radiative term. In this paper we use the complexity of a finite object, a notion introduced in Algorithmic Information Theory, to show that the soliton resolution conjecture is equivalent to the analogous of the second law of thermodynamics for the complexity of a solution of a dispersive equation.


Solitons Complexity Entropy Dispersive PDEs 



I thank the referees for the comments and the suggestions that have greatly improved the paper. I am partially supported by “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)” of Istituto Nazionale di Alta Matematica (INdAM), Italy.


  1. 1.
    Bellazzini, J., Benci, V., Bonanno, C., Sinibaldi, E.: Hylomorphic solitons in the nonlinear Klein–Gordon equation. Dyn. Partial Differ. Equ. 6, 311–334 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benci, V., Ghimenti, M., Micheletti, A.M.: The nonlinear Schrödinger equation: soliton dynamics. J. Differ. Equ. 249, 3312–3341 (2010)MathSciNetADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Bonanno, C.: Entropy and complexity in dynamical systems and PDEs. In: Canovas, J.S. (ed.) Advances in Discrete Dynamics, pp. 183–218. Nova Science Publishers, New York (2012)Google Scholar
  4. 4.
    Bonanno, C., Collet, P.: Complexity for extended dynamical systems. Commun. Math. Phys. 275, 721–748 (2007)MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166, 1–26 (1994)MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Bourgain, J.: Invariant measures for NLS in infinite volume. Commun. Math. Phys. 210, 605–620 (2000)MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Brudno, A.A.: Entropy and the complexity of the trajectories of a dynamical system. Trans. Moscow Math. Soc. 2, 127–151 (1983)Google Scholar
  8. 8.
    Chatterjee, S.: Invariant measures and the soliton resolution conjecture. Commun. Pure Appl. Math. 67, 1737–1842 (2014)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, S., Kirkpatrick, K.: Probabilistic methods for discrete nonlinear Schrödinger equations. Commun. Pure Appl. Math. 65, 727–757 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Coleman, S., Glaser, V., Martin, A.: Action minima among solutions to a class of euclidean scalar field equation. Commun. Math. Phys. 58, 211–221 (1978)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    D’yachenko, A.I., Zakharov, V.E., Pushkarev, A.N., Shvets, V.F., Yan’kov, V.V.: Soliton turbulence in nonintegrable systems. Sov. Phys. JETP 69, 1144–1147 (1989)Google Scholar
  12. 12.
    Duyckaerts, T., Kenig, C., Merle, F.: Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal. 22, 639–698 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Duyckaerts, T., Kenig, C., Merle, F.: Classification of radial solutions of the focusing, energy-critical wave equation. Camb. J. Math. 1, 75–144 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Duyckaerts, T., Kenig, C., Merle, F.: Solutions of the focusing nonradial critical wave equation with the compactness property. Ann. Sci. Norm. Super. Pisa Cl. Sci. (2014). doi: 10.2422/2036-2145.201402_001
  15. 15.
    Jordan, R., Josserand, C.: Self-organization in nonlinear wave turbulence. Phys. Rev. E 61, 1527–1539 (2000)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Jordan, R., Turkington, B., Zirbel, C.L.: A mean-field statistical theory for the nonlinear Schrd̈ingier equation. Phys. D 137, 353–378 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lebowitz, J.L., Rose, H.A., Speer, E.R.: Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50, 657–687 (1988)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  20. 20.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)zbMATHGoogle Scholar
  21. 21.
    Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)zbMATHGoogle Scholar
  22. 22.
    Rider, B.C.: On the \(\infty \)-volume limit of the focusing cubic Schrodinger equation. Commun. Pure Appl. Math. 55, 1231–1248 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tao, T.: Nonlinear Dispersive Equations. American Mathematical Society, Providence, RI (2006)zbMATHGoogle Scholar
  25. 25.
    Tao, T.: A global compact attractor for high-dimensional defocusing non-linear Schrdinger equations with potential. Dyn. Partial Differ. Equ. 5, 101–116 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tao, T.: Why are solitons stable? Bull. Am. Math. Soc. (N.S.) 46, 1–33 (2009)CrossRefzbMATHGoogle Scholar
  27. 27.
    Weinstein, M.I.: Excitation threshold for nonlinear localized modes on lattices. Nonlinearity 12, 673–691 (1999)MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Zakharov, V.E., Pushkarev, A.N., Shvets, V.F., Yan’kov, V.V.: Soliton turbulence. JETP Lett. 48, 83–86 (1988)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di PisaPisaItaly

Personalised recommendations