Journal of Statistical Physics

, Volume 160, Issue 4, pp 794–814 | Cite as

A KPZ Cocktail-Shaken, not Stirred...

Toasting 30 Years of Kinetically Roughened Surfaces
Article

Abstract

The stochastic partial differential equation proposed nearly three decades ago by Kardar, Parisi and Zhang (KPZ) continues to inspire, intrigue and confound its many admirers. Here, we (i) pay debts to heroic predecessors, (ii) highlight additional, experimentally relevant aspects of the recently solved 1+1 KPZ problem, (iii) use an expanding substrates formalism to gain access to the 3d radial KPZ equation and, lastly, (iv) examining extremal paths on disordered hierarchical lattices, set our gaze upon the fate of \(d=\infty \) KPZ. Clearly, there remains ample unexplored territory within the realm of KPZ and, for the hearty, much work to be done, especially in higher dimensions, where numerical and renormalization group methods are providing a deeper understanding of this iconic equation.

Keywords

Nonequilibrium growth Extremal paths Universal limit distributions 

Notes

Acknowledgments

The authors would like to express their gratitude to Herbert Spohn for his many years of inspired work, wisdom, and stamina on behalf of the KPZ cause. Thanks, too, to Joel Lebowitz for keeping the statistical mechanical fire well-lit through the generations. This work is supported in part by KAKENHI (No. 25707033 from JSPS and No. 25103004 “Fluctuation & Structure” from MEXT in Japan).

References

  1. 1.
    Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889 (1986)ADSMATHGoogle Scholar
  2. 2.
    Krug, J., Meakin, P., Halpin-Healy, T.: Amplitude universality for driven interfaces and directed polymers in random media. Phys. Rev. A 45, 638 (1992)ADSGoogle Scholar
  3. 3.
    Spohn, H.: KPZ scaling theory and the semi-discrete directed polymer. arXiv:1201.0645
  4. 4.
    Krug, J., Meakin, P.: Universal finite-size effects in the rate of growth processes. J. Phys. A 23, L987 (1990)ADSGoogle Scholar
  5. 5.
    Huse, D.A., Henley, C.L., Fisher, D.S.: Forced Burgers equation, exact exponent, fluctuation-dissipation theorem. Phys. Rev. Lett. 55, 2924 (1985)ADSGoogle Scholar
  6. 6.
    Dhar, D.: An exactly solved model for interface growth. Phase Transit. 9, 51 (1987)Google Scholar
  7. 7.
    Gwa, L.-H., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin hamiltonian. Phys. Rev. Lett. 68, 725 (1992)MathSciNetADSMATHGoogle Scholar
  8. 8.
    Gwa, L.-H., Spohn, H.: Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation. Phys. Rev. A 46, 844 (1992)ADSGoogle Scholar
  9. 9.
    Kardar, M.: Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B 290, 582 (1987)MathSciNetADSGoogle Scholar
  10. 10.
    Kardar, M., Nelson, D.R.: Commensurate-incommensurate transitions with quenched disorder. Phys. Rev. Lett. 55, 1157 (1985)ADSGoogle Scholar
  11. 11.
    Imbrie, J.Z., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys. 52, 609 (1988)MathSciNetADSMATHGoogle Scholar
  12. 12.
    Doty, C.A., Kosterlitz, J.M.: Exact dynamical exponent at the Kardar-Parisi-Zhang roughening transition. Phys. Rev. Lett. 69, 1979 (1992)ADSGoogle Scholar
  13. 13.
    Medina, E., Hwa, T., Kardar, M., Zhang, Y.-C.: Burgers equation with correlated noise: renormalization-group analysis and applications to directed polymers and interface growth. Phys. Rev. A 39, 3053 (1989)MathSciNetADSGoogle Scholar
  14. 14.
    Frey, E., Täuber, U.C.: Two-loop renormalization-group analysis of the Burgers-Kardar-Parisi-Zhang equation. Phys. Rev. E 50, 1024 (1994)MathSciNetADSGoogle Scholar
  15. 15.
    van Beijeren, H., Kutner, R., Spohn, H.: Excess noise for driven diffusive systems. Phys. Rev. Lett. 54, 2026 (1985)MathSciNetADSGoogle Scholar
  16. 16.
    Frey, E., Täuber, U., Hwa, T.: Mode-coupling and renormalization group results for the noisy Burgers equation. Phys. Rev. E 53, 4424 (1996)ADSGoogle Scholar
  17. 17.
    Huse, D.A., Henley, C.L.: Pinning and roughening of domain walls in Ising systems due to random impurities. Phys. Rev. Lett. 54, 2708 (1985)ADSGoogle Scholar
  18. 18.
    Kardar, M.: Roughening by impurities at finite temperatures. Phys. Rev. Lett. 55, 2923 (1985)ADSGoogle Scholar
  19. 19.
    Kim, J.-M., Kosterlitz, M.: Growth in a restricted solid-on-solid model. Phys. Rev. Lett. 62, 2289 (1989)ADSGoogle Scholar
  20. 20.
    Forrest, B., Tang, L.-H.: Surface roughening in a hypercube-stacking model. Phys. Rev. Lett. 64, 1405 (1990)ADSGoogle Scholar
  21. 21.
    Amar, J.A., Family, F.: Numerical solution of a continuum equation for interface growth in 2+1 dimensions. Phys. Rev. A 41, 3399 (1990)ADSGoogle Scholar
  22. 22.
    Tang, L.-H., Forrest, B., Wolf, D.E.: Kinetic surface roughening. II. Hypercube-stacking models. Phys. Rev. A 45, 7162 (1992)Google Scholar
  23. 23.
    Moser, K., Wolf, D.: Vectorized and parallel simulations of the KPZ equation in 3+1 dimensions. J. Phys. A 27, 4049 (1994)ADSGoogle Scholar
  24. 24.
    Hwa, T., Frey, E.: Exact scaling function of interface growth dynamics. Phys. Rev. E 44, R7873 (1991)ADSGoogle Scholar
  25. 25.
    Tang, L.-H.: Steady-state scaling function of the (1 + 1)-dimensional single-step model. J. Stat. Phys. 67, 819 (1992)ADSMATHGoogle Scholar
  26. 26.
    Kim, J.M., Moore, M.A., Bray, A.-J.: Zero-temperature directed polymers in a random potential. Phys. Rev. A 44, 2345 (1991)ADSGoogle Scholar
  27. 27.
    Halpin-Healy, T.: Directed polymers in random media: probability distributions. Phys. Rev. A 44, R3415 (1991)ADSGoogle Scholar
  28. 28.
    Meakin, P.: The growth of rough surfaces and interfaces. Phys. Rep. 235, 189 (1993)ADSGoogle Scholar
  29. 29.
    Halpin-Healy, T., Zhang, Y.-C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254, 215 (1995)ADSGoogle Scholar
  30. 30.
    Krug, J.: Origins of scale invariance in growth processes. Adv. Phys. 46, 139 (1997)ADSGoogle Scholar
  31. 31.
    Maunuksela, J.: Kinetic roughening in the slow combustion of paper. Phys. Rev. Lett. 79, 1515 (1997)ADSGoogle Scholar
  32. 32.
    Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997)MathSciNetADSMATHGoogle Scholar
  33. 33.
    Schütz, G.M.: Duality relations for asymmetric exclusion processes. J. Stat. Phys. 86, 1265 (1997)ADSMATHGoogle Scholar
  34. 34.
    Lässig, M., Kinzelbach, H.: Upper critical dimension of the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 78, 903 (1997)ADSGoogle Scholar
  35. 35.
    Lässig, M.: Quantized scaling of growing surfaces. Phys. Rev. Lett. 80, 2366 (1998)ADSGoogle Scholar
  36. 36.
    Ala-Nissila, T.: Upper critical dimension of the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 80, 887 (1998)ADSGoogle Scholar
  37. 37.
    Kim, J.M.: Phase transition of the KPZ equation in four substrate dimensions. Phys. Rev. Lett. 80, 888 (1998)ADSGoogle Scholar
  38. 38.
    Castellano, C., Marsili, M., Pietronero, L.: Nonperturbative renormalization of the Kardar-Parisi-Zhang growth dynamics. Phys. Rev. Lett. 80, 3527 (1998)ADSGoogle Scholar
  39. 39.
    Marinari, E., Pagnani, A., Parisi, G.: Critical exponents of the KPZ equation via multi-surface coding numerical simulations. J. Phys. A 33, 8181 (2000)MathSciNetADSMATHGoogle Scholar
  40. 40.
    Halpin-Healy, T.: Disorder-induced roughening of diverse manifolds. Phys. Rev. A 42, 711 (1990)ADSGoogle Scholar
  41. 41.
    Frey, E., Täuber, U., Janssen, H.K.: Scaling regimes and critical dimensions in the Kardar-Parisi-Zhang problem. Europhys. Lett. 47, 14 (1999)ADSGoogle Scholar
  42. 42.
    Perlsman, E., Schwartz, M.: UCD of the KPZ equation. Phys. Rev. E 85, 050103 (2012)Google Scholar
  43. 43.
    Pagnani, A., Parisi, G.: Multisurface coding simulations of the RSOS model in four dimensions. Phys. Rev. E 87, 010102 (2013)ADSGoogle Scholar
  44. 44.
    Kim, J.M., Kim, S.-W.: RSOS model with a proper restriction parameter N in 4+1 dimensions. Phys. Rev. E 88, 034102 (2013)ADSGoogle Scholar
  45. 45.
    Alves, S.G., Oliveira, T.J., Ferreira, S.C.: Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension. Phys. Rev. E 90, 020103 (2014)ADSGoogle Scholar
  46. 46.
    Moore, M.A., Blum, T., Doherty, J.P., Marsili, M., Bouchaud, J.-P., Claudin, P.: Glassy solutions of the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 74, 4257 (1995)ADSGoogle Scholar
  47. 47.
    Canét, L., Chaté, H., Delamotte, B., Wschebor, N.: Nonperturbative renormalization group for the KPZ Equation. Phys. Rev. Lett. 104, 150601 (2010)ADSGoogle Scholar
  48. 48.
    Prähofer, M., Spohn, H.: Universal distributions for growth processes in 1+1 dimensions and random matrices. Phys. Rev. Lett. 84, 4882 (2000)ADSGoogle Scholar
  49. 49.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437 (2000)ADSMATHGoogle Scholar
  50. 50.
    Tracy, C., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151 (1994)MathSciNetADSMATHGoogle Scholar
  51. 51.
    Tracy, C., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727 (1996)MathSciNetADSMATHGoogle Scholar
  52. 52.
    Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119 (1999)MathSciNetMATHGoogle Scholar
  53. 53.
    Aldous, D., Diaconis, P.: Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. Bull. Am. Math. Soc. 36, 413 (1999)MathSciNetMATHGoogle Scholar
  54. 54.
    Okounkov, A.: Random matrices and random permutations. Int. Math. Res. Not. 2000, 1043 (2000)MathSciNetMATHGoogle Scholar
  55. 55.
    Odylyzko, A.M., Rains, E.M.: ATT Bell Labs Technical Report (1999)Google Scholar
  56. 56.
    Baer, R.M., Brock, P.: Natural sorting over permutation spaces. Math. Comput. 22, 385 (1968)MathSciNetGoogle Scholar
  57. 57.
    Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523 (2000)MathSciNetMATHGoogle Scholar
  58. 58.
    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071 (2002)MATHGoogle Scholar
  59. 59.
    Myllys, M., Maunuksela, J., Alava, M., Ala-Nissila, T., Merikoski, J., Timonen, J.: Kinetic roughening in slow combustion of paper. Phys. Rev. E 64, 036101 (2001)ADSGoogle Scholar
  60. 60.
    Myllys, M.: Effect of a columnar defect on the shape of slow-combustion fronts. Phys. Rev. E 68, 051103 (2003)ADSGoogle Scholar
  61. 61.
    Miettinen, L., Myllys, M., Merikoski, J., Timonen, J.: Experimental determination of KPZ height-fluctuation distributions. Eur. Phys. J. B 46, 55 (2005)ADSGoogle Scholar
  62. 62.
    Colaiori, F., Moore, M.A.: Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the KPZ equation. Phys. Rev. Lett. 86, 3946 (2001)ADSGoogle Scholar
  63. 63.
    Fogedby, H.: Localized growth modes, dynamic textures, and UCD for the KPZ equation in the weak-noise limit. Phys. Rev. Lett. 94, 195702 (2005)ADSGoogle Scholar
  64. 64.
    Fogedby, H.: Kardar-Parisi-Zhang equation in the weak noise limit: pattern formation and upper critical dimension. Phys. Rev. E 73, 031104 (2006)MathSciNetADSGoogle Scholar
  65. 65.
    Palasantzas, G.: Roughening aspects of room temperature vapor deposited oligomer thin films onto Si substrates. Surf. Sci 507, 357 (2002)ADSGoogle Scholar
  66. 66.
    Halpin-Healy, T., Lin, Y.: Universal aspects of curved, flat and stationary-state KPZ statistics. Phys. Rev. E 89, 010103 (2014)ADSGoogle Scholar
  67. 67.
    Majumdar, S.N., Nechaev, S.: Anisotropic ballistic deposition model with links to the Ulam problem and the Tracy-Widom distribution. Phys. Rev. E 69, 011103 (2004)MathSciNetADSGoogle Scholar
  68. 68.
    Barkema, G.T., Ferrari, P.L., Lebowitz, J.L., Spohn, H.: Kardar-Parisi-Zhang universality class and the anchored Toom interface. Phys. Rev. E 90, 042116 (2014)ADSGoogle Scholar
  69. 69.
    Kriecherbauer, T., Krug, J.: A pedestrian’s view on interacting particle systems, KPZ universality and random matrices. J. Phys. A. 43, 403001 (2010)MathSciNetGoogle Scholar
  70. 70.
    Corwin, I.: The KPZ equation and universality class. Random Matrices 1, 1130001 (2012)MathSciNetGoogle Scholar
  71. 71.
    Sasamoto, T., Spohn, H.: One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality. Phys. Rev. Lett. 104, 230602 (2010)ADSGoogle Scholar
  72. 72.
    Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Commun. Pure Appl. Math. 64, 466 (2011)MathSciNetMATHGoogle Scholar
  73. 73.
    Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. Europhys. Lett. 90, 20002 (2010)ADSGoogle Scholar
  74. 74.
    Dotsenko, V.: Bethe ansatz derivation of the Tracy-Widom distribution for one-dimensional directed polymers. Europhys. Lett. 90, 20003 (2010)ADSGoogle Scholar
  75. 75.
    Tracy, C.A., Widom, H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290, 129 (2009)MathSciNetADSMATHGoogle Scholar
  76. 76.
    Calabrese, P., Le Doussal, P.: Exact solution for the Kardar-Parisi-Zhang equation with flat initial conditions. Phys. Rev. Lett. 106, 250603 (2011)ADSGoogle Scholar
  77. 77.
    Le Doussal, P., Calabrese, P.: The KPZ equation with flat initial condition and the directed polymer with one free end. J. Stat. Mech. P06001 (2012)Google Scholar
  78. 78.
    Gueudré, T., Le Doussal, P.: Directed polymer near a hard wall and KPZ equation in the half-space. EPL 100, 26006 (2012)ADSGoogle Scholar
  79. 79.
    Imamura, T., Sasamoto, T.: Exact solution for the stationary Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 108, 190603 (2012)ADSGoogle Scholar
  80. 80.
    Borodin, A., Corwin, I., Ferrari, P.L., Vető, B.: Height fluctuations for the stationary KPZ equation. arXiv:1407.6977
  81. 81.
    Takeuchi, K.A., Sano, M.: Universal fluctuations of growing interfaces: Evidence in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010)ADSGoogle Scholar
  82. 82.
    Takeuchi, K.A., Sano, M., Sasamoto, T., Spohn, H.: Growing interfaces uncover universal fluctuations behind scale invariance. Sci. Rep. (Nature) 1, 34 (2011)ADSGoogle Scholar
  83. 83.
    Takeuchi, K.A., Sano, M.: Evidence for geometry-dependent universal fluctuations of KPZ interfaces in liquid-crystal turbulence. J. Stat. Phys. 147, 853–890 (2012)ADSMATHGoogle Scholar
  84. 84.
    Takeuchi, K.A.: Crossover from growing to stationary interfaces in the Kardar-Parisi-Zhang class. Phys. Rev. Lett. 110, 210604 (2013)ADSGoogle Scholar
  85. 85.
    Kloss, T., Canet, L., Wschebor, N.: Nonperturbative renormalization group for the stationary Kardar-Parisi-Zhang equation: scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions. Phys. Rev. E 86, 051124 (2012). see, esp., section IV-EADSGoogle Scholar
  86. 86.
    Halpin-Healy, T.: (2+1)-Dimensional directed polymer in a random medium: scaling phenomena and universal distributions. Phys. Rev. Lett. 109, 170602 (2012)ADSGoogle Scholar
  87. 87.
    Halpin-Healy, T.: Extremal paths, the stochastic heat equation, and the 3d KPZ universality class. Phys. Rev. E 88, 042118 (2013); Phys. Rev. E 88, 069903 (2013)Google Scholar
  88. 88.
    Oliveira, T.J., Alves, S.G., Ferreira, S.C.: Kardar-Parisi-Zhang universality class in (2+1) dimensions: universal geometry-dependent distributions and finite-time corrections. Phys. Rev. E 87, 040102 (2013)ADSGoogle Scholar
  89. 89.
    Prähofer, M.: Stochastic Surface Growth. Ludwig-Maximilians-Universitait, München (2003)Google Scholar
  90. 90.
    Halpin-Healy, T., Palasantzas, G.: Universal correlators & distributions as experimental signatures of (2 + 1)-dimensional Kardar-Parisi-Zhang growth. EPL 105, 50001 (2014)ADSGoogle Scholar
  91. 91.
    Carrasco, I.S.S., Takeuchi, K.A., Ferreira, S.C., Oliveira, T.J.: Interface fluctuations for deposition on enlarging flat substrates. New J. Phys. 16, 123057 (2014)ADSGoogle Scholar
  92. 92.
    Almeida, R.A.L., Ferreira, S.O., Oliveira, T.J., Aarao Reis, F.D.A.: Universal fluctuations in the growth of semiconductor thin films. Phys. Rev. B 89, 045309 (2014)Google Scholar
  93. 93.
    Hairer, M.: Solving the KPZ equation. Ann. Math. 178, 559 (2013)MathSciNetMATHGoogle Scholar
  94. 94.
    Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40, 19 (2012)MathSciNetMATHGoogle Scholar
  95. 95.
    O‘Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40, 437 (2012)MathSciNetMATHGoogle Scholar
  96. 96.
    Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Rel. Fields 158, 225 (2014)MathSciNetMATHGoogle Scholar
  97. 97.
    Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP. Ann. Probab. 42, 2314 (2014)MathSciNetGoogle Scholar
  98. 98.
    Calabrese, P., Kormos, M., Le Doussal, P.: From the sine-Gordon field theory to the Kardar-Parisi-Zhang growth equation. EPL 107, 10011 (2014)ADSGoogle Scholar
  99. 99.
    Barraquand, G., Corwin, I.: The q-Hahn asymmetric exclusion process. arXiv:1501.03445
  100. 100.
    Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. arXiv:1502.07374
  101. 101.
    Dean, D.S., Le Doussal, P., Majumdar, S.N., Schehr, G.: Finite-temperature free fermions and the KPZ equation at finite time. Phys. Rev. Lett. 114, 110402 (2015)ADSGoogle Scholar
  102. 102.
    Johansson, K.: Two-time distribution in Brownian directed percolation. arXiv:1502.00941
  103. 103.
    Maritan, A., Toigo, F., Koplik, J., Banavar, J.R.: Dynamics of growing interfaces. Phys. Rev. Lett. 69, 3193 (1992)ADSGoogle Scholar
  104. 104.
    Batchelor, M.T., Henry, B.I., Watt, S.D.: Continuum model for radial interface growth. Physica A 260, 11 (1998)MathSciNetADSGoogle Scholar
  105. 105.
    Singha, S.B.: Persistence of surface fluctuations in radially growing surfaces. J. Stat. Mech. 2005, P08006 (2005)Google Scholar
  106. 106.
    Masoudi, A.A.: Statistical analysis of radial interface growth. JSTAT 2012, L02001 (2012)Google Scholar
  107. 107.
    Rodriguez-Laguna, J., Santalla, S. N., Cuerno, R.: Intrinsic geometry approach to surface kinetic roughening. J. Stat. Mech. P05032 (2011)Google Scholar
  108. 108.
    Santalla, S.N., Rodriguez-Laguna, J., Cuerno, R.: The circular Kardar-Parisi-Zhang equation as an inflating, self-avoiding ring polymer. Phys. Rev. E 89, 010401 (2014)ADSGoogle Scholar
  109. 109.
    Santalla, S.N., Rodriguez-Laguna, J., LaGatta, T., Cuerno, R.: Random geometry and the Kardar-Parisi-Zhang universality class. New J. Phys. 17, 033018 (2015)MathSciNetADSGoogle Scholar
  110. 110.
    Alves, S.G., Oliveira, T.J., Ferreira, S.C.: Universal fluctuations in radial growth models belonging to the KPZ universality class. Europhys. Lett. 96, 48003 (2011)ADSGoogle Scholar
  111. 111.
    Takeuchi, K.A.: Statistics of circular interface fluctuations in an off-lattice Eden model. J. Stat. Mech. 2012, P05007 (2012)Google Scholar
  112. 112.
    Alves, S.G., Oliveira, T.J., Ferreira, S.C.: Non-universal parameters, corrections and universality in Kardar-Parisi-Zhang growth. JSTAT 2013, P05007 (2013)Google Scholar
  113. 113.
    Bornemann, F.: On the numerical evaluation of Fredholm determinants. Math. Comput. 79, 871915 (2010)MathSciNetGoogle Scholar
  114. 114.
    Rácz, Z., Plischke, M.: Width distribution for (2+1)-dimensional growth and deposition processes. Phys. Rev. E 50, 3530 (1994)ADSGoogle Scholar
  115. 115.
    Foltin, G., Oerding, K., Rácz, Z., Workman, R.L., Zia, R.K.P.: Width-distribution for random-walk interfaces. Phys. Rev. E 50, R639 (1994)ADSGoogle Scholar
  116. 116.
    Edwards, S.F., Wilkinson, D.R.: The surface statistics of a granular aggregate. Proc. R. Soc. London Ser. A 381, 17 (1982)MathSciNetADSGoogle Scholar
  117. 117.
    Antal, T., Droz, M., Győrgyi, G., Rácz, Z.: Roughness distributions for 1/f\(^\alpha \) signals. Phys. Rev. E 65, 046140 (2002)ADSGoogle Scholar
  118. 118.
    Santachiara, R., Rosso, A., Krauth, W.: Universal width distribution in non-Markovian gaussian processes. JSTAT 2007, P02009 (2007)Google Scholar
  119. 119.
    Raychaudhauri, S., Cranston, M., Przybyla, C., Shapir, Y.: Maximal height scaling of kinetically growing surfaces. Phys. Rev. Lett. 87, 136101 (2001)ADSGoogle Scholar
  120. 120.
    Majumdar, S.N., Comtet, A.: Exact maximal height distribution of fluctuating interfaces. Phys. Rev. Lett. 92, 225501 (2004)ADSGoogle Scholar
  121. 121.
    Majumdar, S.N., Comtet, A.: Airy distribution function: From the area under a Brownian excursion to the maximal height of fluctuating interfaces. J. Stat. Phys. 119, 777 (2005)MathSciNetADSMATHGoogle Scholar
  122. 122.
    Schehr, G., Majumdar, S.: Universal asymptotic statistics of maximal relative height in one-dimensional solid-on-solid models. Phys. Rev. E 73, 056103 (2006)ADSGoogle Scholar
  123. 123.
    Győrgyi, G., Moloney, N.R., Ozogány, K., Rácz, Z.: Maximal height statistics for 1/\(f^a\) signals. Phys. Rev. E 75, 021123 (2007)MathSciNetADSGoogle Scholar
  124. 124.
    Rambeau, J., Bustingorry, S., Kolton, A.B., Schehr, G.: MRH of elastic interfaces in random media. Phys. Rev. E 84, 041131 (2011)ADSGoogle Scholar
  125. 125.
    Lee, D.-S.: Distribution of extremes in the fluctuations of two-dimensional equilibrium interfaces. Phys. Rev. Lett. 95, 150601 (2005)ADSGoogle Scholar
  126. 126.
    Kelling, J., Ódor, G.: Extremely large-scale simulation of a Kardar-Parisi-Zhang model using graphics cards. Phys. Rev. E 84, 061150 (2011)ADSGoogle Scholar
  127. 127.
    Derrida, B., Griffiths, R.: Directed polymers on disordered hierarchical lattices. Europhys. Lett. 8, 111 (1989)ADSGoogle Scholar
  128. 128.
    Cook, J., Derrida, B.: Polymers on disordered hierarchical lattices: a nonlinear combination of random variables. J. Stat. Phys. 57, 89 (1989)MathSciNetADSGoogle Scholar
  129. 129.
    Halpin-Healy, T.: Comment–growth in a restricted solid-on-solid model. Phys. Rev. Lett. 63, 917 (1989)ADSGoogle Scholar
  130. 130.
    Derrida, B.: Directed polymers in a random medium. Physica A 163, 71 (1990)MathSciNetADSGoogle Scholar
  131. 131.
    Roux, S., Hansen, A., da Silva, L., Lucena, L., Pandey, R.: Minimal path on the hierarchical diamond lattice. J. Stat. Phys. 65, 183 (1991)ADSMATHGoogle Scholar
  132. 132.
    Monthus, C., Garel, T.: Disorder-dominated phases of random systems: relations between the tail exponents and scaling exponents. J. Stat. Mech. 2008, P01008 (2008)Google Scholar
  133. 133.
    Gumbel, E.J.: Statistics of Extremes. Columbia University Press. New York (1958). Republished by Dover, New York (2004)Google Scholar
  134. 134.
    Ferrari, P.L., Frings, R.: Finite-time corrections in KPZ growth models. J. Stat. Phys. 144, 1123 (2011)MathSciNetADSMATHGoogle Scholar
  135. 135.
    Oliveira, T.J., Ferreira, S.C., Alves, S.G.: Universal fluctuations in KPZ growth on one-dimensional flat substrates. Phys. Rev. E 85, 010601 (2012)ADSGoogle Scholar
  136. 136.
    Derrida, B., Golinelli, O.: Thermal properties of directed polymers in random media. Phys. Rev. A 41, 4160 (1990)ADSGoogle Scholar
  137. 137.
    Monthus, C., Garel, T.: Numerical study of the directed polymer in a 3+1 dimensional random medium. Eur. Phys. J. B 53, 39 (2006)ADSGoogle Scholar
  138. 138.
    Monthus, C., Garel, T.: Probing the tails of the ground-state energy distribution for the directed polymer in a random medium of dimension d=1,2,3 via a Monte Carlo procedure in the disorder. Phys. Rev. E 74, 051109 (2006)ADSGoogle Scholar
  139. 139.
    Dean, D.S., Majumdar, S.N.: Extreme-value statistics of hierarchically correlated variables deviation from Gumbel statistics and anomalous persistence. Phys. Rev. E 64, 046121 (2001)ADSGoogle Scholar
  140. 140.
    Derrida, B., Spohn, H.: Polymers on disordered trees, spin glasses, and traveling waves. J. Stat. Phys. 51, 817 (1988)MathSciNetADSMATHGoogle Scholar
  141. 141.
    Derrida, B., Appert, C.: Universal large deviation function of the KPZ equation in one dimension. J. Stat. Phys. 94, 1 (1999)MathSciNetADSMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics, Barnard CollegeColumbia UniversityNew YorkUSA
  2. 2.Department of PhysicsUniversity of TokyoBunkyo-kuJapan
  3. 3.Department of PhysicsTokyo Institute of TechnologyMeguro-kuJapan

Personalised recommendations