Advertisement

Journal of Statistical Physics

, Volume 160, Issue 3, pp 659–680 | Cite as

Extremality of Translation-Invariant Phases for a Three-State SOS-Model on the Binary Tree

  • C. Kuelske
  • U. A. Rozikov
Article

Abstract

We consider the solid-on-solid model, with spin values \(0,1,2\), on the Cayley tree of order two (binary tree). We treat both ferromagnetic and antiferromagnetic coupling, with interactions which are proportional to the absolute value of the spin differences. We present a classification of all translation-invariant phases (splitting Gibbs measures) of the model. These measures are labeled by solutions to a nonlinear vector-valued functional equation. We show uniqueness in the case of antiferromagnetic interactions, and existence of up to seven phases in the case of ferromagnetic interactions, where the number of phases depends on the interaction strength. Next we investigate whether these states are extremal or non-extremal in the set of all Gibbs measures, when the coupling strength is varied, whenever they exist. We show that two states are always extremal, two states are always non-extremal, while three of the seven states make transitions between extremality and non-extremality. We provide explicit bounds on those transition values, making use of algebraic properties of the models, and an adaptation of the method of Martinelli, Sinclair, Weitz.

Keywords

SOS model Temperature Cayley tree Gibbs measure Extreme measure Tree-indexed Markov chain Reconstruction problem 

Mathematics Subject Classification

82B26 (primary) 60K35 (secondary) 

Notes

Acknowledgments

U.A. Rozikov thanks the DFG Sonderforschungsbereich SFB \(|\) TR12-Symmetries and Universality in Mesoscopic Systems and the Ruhr-University Bochum (Germany) for financial support and hospitality. We thank both referees for their useful suggestions.

References

  1. 1.
    Bleher, P.M., Ruiz, J., Schonmann, R.H., Shlosman, S., Zagrebnov, V.A.: Rigidity of the critical phases on a Cayley tree. Mosc. Math. J. 1(3), 345–363 (2001)MathSciNetGoogle Scholar
  2. 2.
    Bovier, A., Külske, C.: A rigorous renormalization group method for interfaces in random media. Rev. Math. Phys. 6(3), 413–496 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bovier, A., Külske, C.: There are no nice interfaces in \(2+1\) dimensional SOS-models in random media. J. Stat. Phys. 83, 751–759 (1996)zbMATHADSCrossRefGoogle Scholar
  4. 4.
    Formentin, M., Külske, C.: A symmetric entropy bound on the non-reconstruction regime of Markov chains on Galton-Watson trees. Electron. Commun. Probab. 14, 587–596 (2009)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Georgii, H.O.: Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics, 9, 2nd edn. Walter de Gruyter, Berlin (2011)zbMATHCrossRefGoogle Scholar
  6. 6.
    Kelly, F.P.: Stochastic models of computer communication systems. With discussion. J. R. Stat. Soc. Ser. B 47(379–395), 415–428 (1985)Google Scholar
  7. 7.
    Kesten, H., Stigum, B.P.: Additional limit theorem for indecomposable multi-dimensional Galton-Watson processes. Ann. Math. Stat. 37, 1463–1481 (1966)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Külske, C., Rozikov, U.A., Khakimov, R.M.: Description of the translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree. J. Stat. Phys. 156(1), 189–200 (2014)zbMATHMathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Kuelske, C., Rozikov, U.A.: Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree. arXiv:1403.5775
  10. 10.
    Martin, J.B.: Reconstruction thresholds on regular trees. Discrete random walks (Paris, 2003), (electronic). In: Proceedings of Discrete Mathematics and Theoretical Computer Science, AC, pp. 191–204. Association Discrete Mathematics Theoretical Computer Science, Nancy (2003)Google Scholar
  11. 11.
    Martinelli, F., Sinclair, A., Weitz, D.: Fast mixing for independent sets, coloring and other models on trees. Random Struct. Algoritms 31, 134–172 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Mazel, A.E., Suhov, YuM: Random surfaces with two-sided constraints: an application of the theory of dominant ground states. J. Stat. Phys. 64, 111–134 (1991)zbMATHMathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Mazel, A., Suhov, Y., Stuhl, I.: A classical WR model with \(q\) particle types. arXiv:1311.0020v2 (2013)
  14. 14.
    Mossel, E., Peres, Y.: Information flow on trees. Ann. Appl. Probab. 13(3), 817–844 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Mossel, E.: Survey: Information Flow on Trees. Graphs, morphisms and statistical physics. In: DIMACS Series Discrete Mathematics and Theoretical Computer Science 63, pp. 155–170. American Mathematical Society, Providence, RI (2004)Google Scholar
  16. 16.
    Preston, C.: Gibbs States on Countable Sets. Cambridge University Press, Cambridge (1974)zbMATHCrossRefGoogle Scholar
  17. 17.
    Ramanan, K., Sengupta, A., Ziedins, I., Mitra, P.: Markov random field models of multicasting in tree networks. Adv. Appl. Probab. 34, 58–84 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Rozikov, U.A., Suhov, YuM: Gibbs measures for SOS model on a Cayley tree. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9(3), 471–488 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Rozikov, U.A., Shoyusupov, ShA: Gibbs measures for the SOS model with four states on a Cayley tree. Theor. Math. Phys. 149(1), 1312–1323 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Rozikov, U.A.: Gibbs Measures on Cayley Trees. World Sci. Publ, Singapore (2013)zbMATHCrossRefGoogle Scholar
  21. 21.
    Sly, A.: Reconstruction for the Potts model. Ann. Probab. 39, 1365–1406 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Zachary, S.: Bounded, attractive and repulsive Markov specifications on trees and on the one-dimensional lattice. Stoch. Process. Appl. 20, 247–256 (1985)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Fakultät für MathematikRuhr-University of BochumBochumGermany
  2. 2.Institute of mathematicsTashkentUzbekistan

Personalised recommendations