Journal of Statistical Physics

, Volume 160, Issue 5, pp 1389–1404 | Cite as

Tensor Network Contractions for #SAT

Article

Abstract

The computational cost of counting the number of solutions satisfying a Boolean formula, which is a problem instance of #SAT, has proven subtle to quantify. Even when finding individual satisfying solutions is computationally easy (e.g. 2-SAT, which is in \(\mathsf{{P}}\)), determining the number of solutions can be #\(\mathsf{{P}}\)-hard. Recently, computational methods simulating quantum systems experienced advancements due to the development of tensor network algorithms and associated quantum physics-inspired techniques. By these methods, we give an algorithm using an axiomatic tensor contraction language for n-variable #SAT instances with complexity \(O((g+cd)^{O(1)} 2^c)\) where c is the number of COPY-tensors, g is the number of gates, and d is the maximal degree of any COPY-tensor. Thus, n-variable counting problems can be solved efficiently when their tensor network expression has at most \(O(\log n)\) COPY-tensors and polynomial fan-out. This framework also admits an intuitive proof of a variant of the Tovey conjecture (the r,1-SAT instance of the Dubois–Tovey theorem). This study increases the theory, expressiveness and application of tensor based algorithmic tools and provides an alternative insight on these problems which have a long history in statistical physics and computer science.

Keywords

Statistical physics Complexity Computational physics Quantum physics 

References

  1. 1.
    Barahona, F.: On the computational complexity of ising spin glass models. J. Phys. A 15(10), 3241 (1982)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetADSCrossRefMATHGoogle Scholar
  3. 3.
    Monasson, Rémi, Zecchina, Riccardo, Kirkpatrick, Scott, Selman, Bart, Troyansky, Lidror: Determining computational complexity from characteristic phase transitions. Nature 400(6740), 133–137 (1999)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Goerdt, Andreas: A threshold for unsatisfiability. J. Comp. Syst. Sci. 53(3), 469–486 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kirkpatrick, Scott, Selman, Bart: Critical behavior in the satisfiability of random boolean expressions. Science 264(5163), 1297–1301 (1994)MathSciNetADSCrossRefMATHGoogle Scholar
  6. 6.
    Nishimura, Naomi, Ragde, Prabhakar, Szeider, Stefan: Solving# sat using vertex covers. Acta Informa. 44(7–8), 509–523 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fischer, Eldar: Johann A Makowsky, and Elena V Ravve. Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete. Appl. Math. 156(4), 511–529 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Igor, L.: Markov and Yaoyun Shi. Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Samer, M., Szeider, S.: A fixed-parameter algorithm for #SAT with parameter incidence treewidth (2006). arXiv:cs/0610174
  10. 10.
    Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for# sat and bayesian inference. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, 2003, pp. 340–351 (2003)Google Scholar
  11. 11.
    Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Verstraete, F., Murg, V., Cirac, J.I.: Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57(2), 143–224 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Johnson, T.H., Clark, S.R., Jaksch, D.: Dynamical simulations of classical stochastic systems using matrix product states. Phys. Rev. E 82(3), 036702 (2010)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Evenbly, G., Vidal, G.: Tensor network states and geometry. J. Stat. Phys. 145, 891–918 (2011)MathSciNetADSCrossRefMATHGoogle Scholar
  15. 15.
    Eisert, J.: Entanglement and tensor network states. Model. Simul. 3, 520 (2013). http://www.cond-mat.de/events
  16. 16.
    Penrose, Roger: Applications of negative dimensional tensors. In: Welsh, D. (ed.) Combinatorial Mathematics and its Applications, pp. 221–244. Academic Press, New York (1971)Google Scholar
  17. 17.
    Griffiths, R.B.: Channel kets, entangled states, and the location of quantum information. PRA 71(4), 042337 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Griffiths, R.B., Wu, S., Yu, L., Cohen, S.M.: Atemporal diagrams for quantum circuits. PRA 73(5), 052309 (2006)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Gross, D., Eisert, J.: Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98(22), 220503 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Biamonte, J.D., Clark, S.R., Jaksch, D.P.: Categorical Tensor Network States. AIP Advances 1(4), 042172 (2011). http://scitation.aip.org
  21. 21.
    Johnson, T.H., Biamonte, J.D., Clark, S.R., Jaksch, D.: Solving search problems by strongly simulating quantum circuits. Sci. Rep. 3 (2013). http://www.nature.com/srep/
  22. 22.
    Chamon, C., Mucciolo, E.R.: Virtual parallel computing and a search algorithm using matrix product states. Phys. Rev. Lett. 109(3), 030503 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Morton, J., Turner, J.: Generalized counting constraint satisfaction problems with determinantal circuits. Linear Algebra Appl. 466, 357–381 (2015). doi:10.1016/j.laa.2014.09.050
  24. 24.
    Kliesch, M., Gross, D., Eisert, J.: Matrix product operators and states—NP-hardness and undecidability. Phys. Rev. Lett. 113, 160503 (2014). doi:10.1103/PhysRevLett.113.160503
  25. 25.
    Morton, J., Biamonte, J.: Undecidability in tensor network states. Phys. Rev. A 86(3), 030301(R) (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Wolf, M.M., Cubitt, T.S., Perez-Garcia, D.: Are problems in quantum information theory (un) decidable? (2011). arXiv:1111.5425
  27. 27.
    Damm, C., Holzer, M., McKenzie, P.: The complexity of tensor calculus. Comput. Complex. 11(1), 54–89 (2003)MathSciNetGoogle Scholar
  28. 28.
    Eisert, J., Müller, M.P., Gogolin, C.: Quantum measurement occurrence is undecidable. Phys. Rev. Lett. 108(26), 260501 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Chamon, C., Mucciolo, E.R.: Rényi entropies as a measure of the complexity of counting problems. J. Stat. Mech. 4, 8 (2013)Google Scholar
  30. 30.
    Biamonte, J.D.: Nonperturbative k -body to two-body commuting conversion Hamiltonians and embedding problem instances into Ising spins. PRA 77(5), 052331 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Denny, S.J., Biamonte, J.D., Jaksch, D., Clark, S.R.: Algebraically contractible topological tensor network states. J. Phys. A 45(1), 015309 (2012)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Whitfield, J.D., Faccin, M., Biamonte, J.D.: Ground-state spin logic. EPL (Europhys. Lett.) 99, 57004 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Alsina, D., Latorre, J.I.: Tensor Networks for Frustrated Systems: Emergence of Order from Simplex Entanglement. ArXiv e-prints, December 2013Google Scholar
  34. 34.
    Gharibian, S., Landau, Z., Shin, S.W., Wang, G.: Tensor network non-zero testing. ArXiv e-prints, June 2014Google Scholar
  35. 35.
    Valiant, Leslie G.: The complexity of computing the permanent. Theor. Comput. Sci. 8(2), 189–201 (1979)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    García-Sáez, Artur, Latorre, José I.: An exact tensor network for the 3SAT problem. Quantum Inform. Comput. 12(3–4), 283–292 (2012)Google Scholar
  37. 37.
    Kempe, Julia, Kitaev, Alexei, Regev, Oded: The complexity of the local hamiltonian problem. SIAM J. Comput. 35(5), 1070–1097 (2006)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Penrose, R.: The theory of quantized directions. Unpublished (1967)Google Scholar
  39. 39.
    Lafont, Yves: Towards an algebraic theory of boolean circuits. J. Pure Appl. Algebr. 184, 2003 (2003)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Tovey, Craig A.: A simplified NP-complete satisfiability problem. Discrete. Appl. Math. 8(1), 85–89 (1984)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Dubois, Olivier: On the r, s-SAT satisfiability problem and a conjecture of tovey. Discrete. Appl. Math. 26(1), 51–60 (1990)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Halin, Rudolf: S-functions for graphs. J. Geom. 8(1–2), 171–186 (1976)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. B 50, 157–224 (1988)MathSciNetMATHGoogle Scholar
  44. 44.
    Xia, Mingji, Zhang, Peng, Zhao, Wenbo: Computational complexity of counting problems on 3-regular planar graphs. Theor. Comput. Sci. 384(1), 111–125 (2007)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Rényi, A.:. On measures of entropy and information. In: Fourth Berkeley Symposium on Mathematical Statistics and Probability, pp. 547–561 (1961)Google Scholar
  46. 46.
    Biamonte, J., Bergholm, V., Lanzagorta, M.: Tensor network methods for invariant theory. J. Phys. A Math. Gener. 46, 5301 (2013)MathSciNetADSGoogle Scholar
  47. 47.
    Baez, J.C.: Renyi entropy and free energy (2011). arXiv:1102.2098
  48. 48.
    Valiant, Leslie G., Vazirani, Vijay V.: NP is as easy as detecting unique solutions. Theor. Compu. Sci. 47, 85–93 (1986)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Bravyi, Sergey: Contraction of matchgate tensor networks on non-planar graphs. Contemp. Math. 482, 179–211 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.ISI FoundationTorinoItaly
  2. 2.Department of MathematicsThe Pennsylvania State UniversityState CollegeUSA

Personalised recommendations