Advertisement

Journal of Statistical Physics

, Volume 159, Issue 5, pp 987–1016 | Cite as

Equivalence and Nonequivalence of Ensembles: Thermodynamic, Macrostate, and Measure Levels

  • Hugo Touchette
Article

Abstract

We present general and rigorous results showing that the microcanonical and canonical ensembles are equivalent at all three levels of description considered in statistical mechanics—namely, thermodynamics, equilibrium macrostates, and microstate measures—whenever the microcanonical entropy is concave as a function of the energy density in the thermodynamic limit. This is proved for any classical many-particle systems for which thermodynamic functions and equilibrium macrostates exist and are defined via large deviation principles, generalizing many previous results obtained for specific classes of systems and observables. Similar results hold for other dual ensembles, such as the canonical and grand-canonical ensembles, in addition to trajectory or path ensembles describing nonequilibrium systems driven in steady states.

Keywords

Microcanonical and canonical ensembles  Equivalent and nonequivalent ensembles Large deviation theory  Entropy Long-range systems 

Notes

Acknowledgments

I would like to thank many colleagues who have provided useful ideas, comments, and support during the last 12 years that I worked on long-range systems and nonequivalent ensembles: Julien Barré, Freddy Bouchet, Raphael Chetrite, Thierry Dauxois, Rosemary J. Harris, Michael Kastner, Cesare Nardini, and Stefano Ruffo. I especially want to thank Richard S. Ellis for introducing me to many gems and subtleties of large deviations. The present paper owes much to his work.

References

  1. 1.
    Boltzmann, L.: Über die eigenschaften monozyklischer und anderer damit verwandter Systeme. In: Hasenöhrl, F. (ed.) Wissenschaftliche Abhandlungen, vol. III. Chelsea, New York (1968)Google Scholar
  2. 2.
    Gibbs, J.W.: Elementary Principles in Statistical Mechanics with Especial Reference to the Rational Foundation of Thermodynamics (Yale University Press, 1902) reprinted by Dover, New York (1960)Google Scholar
  3. 3.
    Touchette, H., Ellis, R.S., Turkington, B.: An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles. Physica A 340, 138–146 (2004)Google Scholar
  4. 4.
    Ellis, R.S., Haven, K., Turkington, B.: Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101, 999–1064 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Lewis, J.T., Pfister, C.-E., Sullivan, W.G.: Large deviations and the thermodynamic formalism: a new proof of the equivalence of ensembles. In: Fannes, M., Maes, C., Verbeure, A. (eds.) On Three Levels, pp. 183–192. Plenum Press, New York (1994)CrossRefGoogle Scholar
  6. 6.
    Lewis, J.T., Pfister, C.-E., Sullivan, G.W.: The equivalence of ensembles for lattice systems: some examples and a counterexample. J. Stat. Phys. 77, 397–419 (1994b)CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    Lewis, J.T., Pfister, C.-E., Sullivan, W.G.: Entropy, concentration of probability and conditional limit theorem. Markov Process. Relat. Fields 1, 319–386 (1995)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Touchette, H.: Ensemble equivalence for general many-body systems. Europhys. Lett. 96, 50010 (2011)CrossRefADSGoogle Scholar
  9. 9.
    Ruelle, D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin, Amsterdam (1969)zbMATHGoogle Scholar
  10. 10.
    Griffiths, R.B.: Rigorous results and theorems. In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena, vol. 1, pp. 7–109. Academic Press, London (1972)Google Scholar
  11. 11.
    Lynden-Bell, D., Wood, R.: The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon. Not. R. Astron. Soc. 138, 495–525 (1968)CrossRefADSGoogle Scholar
  12. 12.
    Lynden-Bell, D., Lynden-Bell, R.M.: On the negative specific heat paradox. Mon. Not. R. Astron. Soc. 181, 405–419 (1977)CrossRefADSGoogle Scholar
  13. 13.
    Lynden-Bell, D.: Negative specific heat in astronomy, physics and chemistry. Physica A 263, 293–304 (1999)CrossRefADSGoogle Scholar
  14. 14.
    Thirring, W.: Systems with negative specific heat. Z. Phys. A 235, 339–352 (1970)CrossRefGoogle Scholar
  15. 15.
    Chavanis, P.-H.: Phase transitions in self-gravitating systems. Int. J. Mod. Phys. B 20, 3113–3198 (2006)CrossRefADSzbMATHGoogle Scholar
  16. 16.
    Campa, A., Dauxois, T., Ruffo, S.: Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57–159 (2009)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Dauxois, T., Ruffo, S., Cugliandolo, L.F. (eds.): Long-Range Interacting Systems, vol. 90. Lecture Notes of the Les Houches Summer School 2008. Oxford University Press, Oxford (2010)Google Scholar
  18. 18.
    Kastner, M.: Nonequivalence of ensembles for long-range quantum spin systems in optical lattices. Phys. Rev. Lett. 104, 240403 (2010a)CrossRefADSGoogle Scholar
  19. 19.
    Kastner, M.: Nonequivalence of ensembles in the Curie–Weiss anisotropic quantum Heisenberg model. J. Stat. Mech. 2010, P07006 (2010)CrossRefGoogle Scholar
  20. 20.
    Olivier, G., Kastner, M.: Microcanonical analysis of the Curie–Weiss anisotropic quantum Heisenberg model in a magnetic field. J. Stat. Phys. 157, 456–473 (2014)CrossRefADSzbMATHGoogle Scholar
  21. 21.
    Chalony, M., Barré, J., Marcos, B., Olivetti, A., Wilkowski, D.: Long-range one-dimensional gravitational-like interaction in a neutral atomic cold gas. Phys. Rev. A 87, 013401 (2013)CrossRefADSGoogle Scholar
  22. 22.
    Gurarie, V.: The equivalence between the canonical and microcanonical ensembles when applied to large systems. Am. J. Phys. 75, 747–751 (2007)CrossRefADSGoogle Scholar
  23. 23.
    Galgani, L., Scotti, A., Valz Gris, F.: Asymptotic equivalence of classical ensembles by the method of the maximum. Physica 47, 601–609 (1970)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Galgani, L., Manzoni, L., Scotti, A.: Asymptotic equivalence of equilibrium ensembles of classical statistical mechanics. J. Math. Phys. 12, 933–935 (1971)CrossRefADSGoogle Scholar
  25. 25.
    Lanford III, O.E.: Entropy and equilibrium states in classical statistical mechanics. In: Lenard, A. (ed.) Statistical Mechanics and Mathematical Problems. Lecture Notes in Physics, vol. 20, pp. 1–113. Springer, Berlin (1973)Google Scholar
  26. 26.
    Deuschel, J.-D., Stroock, D.W., Zessin, H.: Microcanonical distributions for lattice gases. Commun. Math. Phys. 139, 83–101 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    Stroock, D.W., Zeitouni, O.: Microcanonical distributions, Gibbs’ states, and the equivalence of ensembles. In: Durrett, R., Kesten, H. (eds.) Random Walks, Brownian Motion and Interacting Particle Systems: A Festschrift in Honor of Frank Spitzer, pp. 399–424. Birkhäuser, Boston (1991)CrossRefGoogle Scholar
  28. 28.
    Stroock, D.W.: Microcanonical distributions for one dimensional lattice gases. In: Cruzeiro, A.B., Zambrini, J.-C. (eds.) Stochastic Analysis and Applications: Proceedings of the 1989 Lisbon Conference, Progress in Probability, vol. 26, pp. 190–197. Birkhäuser, Boston (1991)CrossRefGoogle Scholar
  29. 29.
    Roelly, S., Zessin, H.: The equivalence of equilibrium principles in statistical mechanics and some applications to large particle systems. Expo. Math. 11, 385–405 (1993)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Georgii, H.-O.: Large deviations and maximum entropy principle for interacting random fields on \({ Z}^{d}\). Ann. Probab. 21, 1845–1875 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Georgii, H.-O.: Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction. Probab. Theory Relat. Fields 99, 171–195 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Georgii, H.-O.: The equivalence of ensembles for classical systems of particles. J. Stat. Phys. 80, 1341–1378 (1995)CrossRefADSzbMATHMathSciNetGoogle Scholar
  33. 33.
    Kac, M., Uhlenbeck, G.E., Hemmer, P.C.: On the van der Waals theory of the vapor–liquid equilibrium I: discussion of a one-dimensional model. J. Math. Phys. 4, 216–228 (1963)CrossRefADSzbMATHMathSciNetGoogle Scholar
  34. 34.
    Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (1985)CrossRefzbMATHGoogle Scholar
  35. 35.
    Ellis, R.S.: An overview of the theory of large deviations and applications to statistical mechanics. Scand. Actuar. J. 1, 97–142 (1995)CrossRefGoogle Scholar
  36. 36.
    Ellis, R.S.: The theory of large deviations: from Boltzmann’s 1877 calculation to equilibrium macrostates in 2D turbulence. Physica D 133, 106–136 (1999)CrossRefADSzbMATHMathSciNetGoogle Scholar
  37. 37.
    Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478, 1–69 (2009)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  39. 39.
    Pathria, R.K.: Statistical Mechanics, 2nd edn. Butterworth Heinemann, Oxford (1996)zbMATHGoogle Scholar
  40. 40.
    Dorlas, T.C.: Statistical Mechanics: Fundamentals and Model Solutions. IOP, Bristol (1999)zbMATHGoogle Scholar
  41. 41.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)CrossRefzbMATHGoogle Scholar
  42. 42.
    Varadhan, S.R.S.: Asymptotic probabilities and differential equations. Commun. Pure Appl. Math. 19, 261–286 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)zbMATHGoogle Scholar
  44. 44.
    Costeniuc, M., Ellis, R.S., Touchette, H., Turkington, B.: The generalized canonical ensemble and its universal equivalence with the microcanonical ensemble. J. Stat. Phys. 119, 1283–1329 (2005)Google Scholar
  45. 45.
    Touchette, H.: Equivalence and nonequivalence of the microcanonical and canonical ensembles: a large deviations study. PhD Thesis, Department of Physics, McGill University (2003)Google Scholar
  46. 46.
    Touchette, H., Ellis, R.S.: Nonequivalent ensembles and metastability. In: Beck, C., Benedek, G., Rapisarda, A., Tsallis, C. (eds.) Complexity, Metastability and Nonextensivity, pp. 81–87. World Scientific, Singapore (2005)Google Scholar
  47. 47.
    Eyink, G.L., Spohn, H.: Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence. J. Stat. Phys. 70, 833–886 (1993)CrossRefADSzbMATHMathSciNetGoogle Scholar
  48. 48.
    Yukalov, V.: Fluctuations of composite observables and stability of statistical systems. Phys. Rev. E 72, 066119 (2005)CrossRefADSGoogle Scholar
  49. 49.
    Csiszar, I.: \({I}\)-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3, 146–158 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Csiszar, I.: Sanov property, generalized \({I}\)-projection and a conditional limit theorem. Ann. Probab. 12, 768–793 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Csiszar, I.: The method of types. IEEE Trans. Inf. Theory 44, 2505–2523 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Shields, P.C.: Two divergence-rate counterexamples. J. Theor. Probab. 6, 521–545 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Grosskinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys. 113, 389–410 (2003)CrossRefzbMATHGoogle Scholar
  54. 54.
    Grosskinsky, S., Schütz, G.: Discontinuous condensation transition and nonequivalence of ensembles in a zero-range process. J. Stat. Phys. 132, 77–108 (2008)CrossRefADSzbMATHMathSciNetGoogle Scholar
  55. 55.
    Chleboun, P., Grosskinsky, S.: Condensation in stochastic particle systems with stationary product measures. J. Stat. Phys. 154, 432–465 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    Föllmer, H., Orey, S.: Large deviations for the empirical field of a Gibbs measure. Ann. Probab. 16, 961–977 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Föllmer, H.: Random fields and diffusion processes. In: Hennequin, P.-L. (ed.) École d’Été de Probabilités de Saint-Flour 1985–87. Lecture Notes in Mathematics, vol. 1362, pp. 101–203. Springer, New York (1988)Google Scholar
  58. 58.
    Georgii, H.-O.: Gibbs Measures and Phase Transitions, vol. 9. Walter de Gruyter and Co., Berlin (1988)CrossRefzbMATHGoogle Scholar
  59. 59.
    Campa, A., Ruffo, S., Touchette, H.: Negative magnetic susceptibility and nonequivalent ensembles for the mean-field \(\phi ^{4}\) spin model. Physica A 385, 233–248 (2007)CrossRefADSMathSciNetGoogle Scholar
  60. 60.
    Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis. Stochastic Modelling and Applied Probability. Springer, New York (2007)Google Scholar
  61. 61.
    Squartini, T., de Mol, J., den Hollander, F., Garlaschelli, D.: Breaking of ensemble equivalence in networks. arxiv:1501.00388
  62. 62.
    Jack, R.L., Sollich, P.: Large deviations and ensembles of trajectories in stochastic models. Prog. Theor. Phys. Suppl. 184, 304–317 (2010)CrossRefADSzbMATHGoogle Scholar
  63. 63.
    Chetrite, R., Touchette, H.: Nonequilibrium microcanonical and canonical ensembles and their equivalence. Phys. Rev. Lett. 111, 120601 (2013)CrossRefADSGoogle Scholar
  64. 64.
    Chetrite, R., Touchette, H.: Nonequilibrium Markov processes conditioned on large deviations. Ann. Inst. Poincaré A (2014)Google Scholar
  65. 65.
    Evans, R.M.L.: Detailed balance has a counterpart in non-equilibrium steady states. J. Phys. A 38, 293–313 (2005)CrossRefADSzbMATHMathSciNetGoogle Scholar
  66. 66.
    Chandler, D., Garrahan, J.P.: Dynamics on the way to forming glass: bubbles in space–time. Ann. Rev. Chem. Phys. 61, 191–217 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.National Institute for Theoretical Physics (NITheP)StellenboschSouth Africa
  2. 2.Department of PhysicsStellenbosch UniversityStellenboschSouth Africa
  3. 3.Institute of Theoretical PhysicsStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations