Journal of Statistical Physics

, Volume 159, Issue 3, pp 492–529 | Cite as

A Renormalisation Group Method. III. Perturbative Analysis

  • Roland Bauerschmidt
  • David C. Brydges
  • Gordon Slade
Article

Abstract

This paper is the third in a series devoted to the development of a rigorous renormalisation group method for lattice field theories involving boson fields, fermion fields, or both. In this paper, we motivate and present a general approach towards second-order perturbative renormalisation, and apply it to a specific supersymmetric field theory which represents the continuous-time weakly self-avoiding walk on \({{{\mathbb {Z}}}^{d}}\). Our focus is on the critical dimension \(d=4\). The results include the derivation of the perturbative flow of the coupling constants, with accompanying estimates on the coefficients in the flow. These are essential results for subsequent application to the 4-dimensional weakly self-avoiding walk, including a proof of existence of logarithmic corrections to their critical scaling. With minor modifications, our results also apply to the 4-dimensional \(n\)-component \(|\varphi |^4\) spin model.

Keywords

Renormalisation group Perturbation theory Self-avoiding walk 

Mathematics Subject Classification

82B28 82B41 81T60 60K35 

References

  1. 1.
    Bauerschmidt, R.: A simple method for finite range decomposition of quadratic forms and Gaussian fields. Probab. Theory Relat. Fields 157, 817–845 (2013)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bauerschmidt, R., Brydges, D.C., Slade, G.: Critical two-point function of the 4-dimensional weakly self-avoiding walk. Commun. Math. Phys. (2014). arXiv:1403.7268
  3. 3.
    Bauerschmidt, R., Brydges, D.C., Slade, G.: Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. Commun. Math. Phys. (2014). arXiv:1403.7422
  4. 4.
    Bauerschmidt, R., Brydges, D.C., Slade. G.: Ptsoft: python program for perturbative renormalisation group calculation, Version 1.0 [Software]. Available at http://www.math.ubc.ca/~slade/, (2014)
  5. 5.
    Bauerschmidt, R., Brydges, D.C., Slade. G.: Structural stability of a dynamical system near a non-hyperbolic fixed point. Annales Henri Poincaré (2014). arXiv:1211.2477
  6. 6.
    Bauerschmidt, R., Brydges, D.C., Slade, G.: Scaling limits and critical behaviour of the \(4\)-dimensional \(n\)-component \(|\varphi |^4\) spin model. J. Stat. Phys. 157, 692–742 (2014)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Brydges, D., Slade, G.: Renormalisation group analysis of weakly self-avoiding walk in dimensions four and higher. In: Bhatia, R., et al. (eds.) Proceedings of the International Congress of Mathematicians. Hyderabad 2010, pp. 2232–2257. World Scientific, Singapore (2011)Google Scholar
  8. 8.
    Brydges, D.C.: Lectures on the renormalisation group. In: Sheffield, S., Spencer, T. (eds.) Statistical Mechanics, pp. 7–93. American Mathematical Society, Providence, (2009). IAS/Park City Mathematics Series, vol. 16Google Scholar
  9. 9.
    Brydges, D.C., Guadagni, G., Mitter, P.K.: Finite range decomposition of Gaussian processes. J. Stat. Phys. 115, 415–449 (2004)CrossRefADSMATHMathSciNetGoogle Scholar
  10. 10.
    Brydges, D.C., Imbrie, J.Z., Slade, G.: Functional integral representations for self-avoiding walk. Probab. Surv. 6, 34–61 (2009)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Brydges, D.C., Slade, G.: A renormalisation group method. I. Gaussian integration and normed algebras. J. Stat. Phys. (to appear). doi:10.1007/s10955-014-1163-z
  12. 12.
    Brydges, D.C., Slade, G.: A renormalisation group method. II. Approximation by local polynomials. J. Stat. Phys. (to appear). doi:10.1007/s10955-014-1164-y
  13. 13.
    Brydges, D.C., Slade, G.: A renormalisation group method. IV. Stability analysis. J. Stat. Phys. (to appear). doi:10.1007/s10955-014-1166-9
  14. 14.
    Brydges, D.C., Slade, G.: A renormalisation group method. V. A single renormalisation group step. J. Stat. Phys. (to appear). doi:10.1007/s10955-014-1167-8
  15. 15.
    Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1969)MATHGoogle Scholar
  16. 16.
    Gell-Mann, M., Low, F.E.: Quantum electrodynamics at small distances. Phys. Rev. 95, 1300–1312 (1954)CrossRefADSMATHMathSciNetGoogle Scholar
  17. 17.
    Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, Berlin (1987)Google Scholar
  18. 18.
    Slade, G., Tomberg, A.: Critical correlation functions for the \(4\)-dimensional weakly self-avoiding walk and \(n\)-component \(|\varphi |^4\) model (2014). arXiv:1412.2668
  19. 19.
    Wilson, K.G.: The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583–600 (1983)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Roland Bauerschmidt
    • 1
    • 2
  • David C. Brydges
    • 1
  • Gordon Slade
    • 1
  1. 1.Department of MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.School of MathematicsInstitute for Advanced StudyPrincetonUSA

Personalised recommendations