Journal of Statistical Physics

, Volume 158, Issue 3, pp 601–627 | Cite as

Flocking and Turning: a New Model for Self-organized Collective Motion

  • Andrea Cavagna
  • Lorenzo Del Castello
  • Irene Giardina
  • Tomas Grigera
  • Asja Jelic
  • Stefania Melillo
  • Thierry Mora
  • Leonardo Parisi
  • Edmondo Silvestri
  • Massimiliano Viale
  • Aleksandra M. Walczak
Article

Abstract

Birds in a flock move in a correlated way, resulting in large polarization of velocities. A good understanding of this collective behavior exists for linear motion of the flock. Yet observing actual birds, the center of mass of the group often turns giving rise to more complicated dynamics, still keeping strong polarization of the flock. Here we propose novel dynamical equations for the collective motion of polarized animal groups that account for correlated turning including solely social forces. We exploit rotational symmetries and conservation laws of the problem to formulate a theory in terms of generalized coordinates of motion for the velocity directions akin to a Hamiltonian formulation for rotations. We explicitly derive the correspondence between this formulation and the dynamics of the individual velocities, thus obtaining a new model of collective motion. In the appropriate overdamped limit we recover the well-known Vicsek model, which dissipates rotational information and does not allow for polarized turns. Although the new model has its most vivid success in describing turning groups, its dynamics is intrinsically different from previous ones in a wide dynamical regime, while reducing to the hydrodynamic description of Toner and Tu at very large length-scales. The derived framework is therefore general and it may describe the collective motion of any strongly polarized active matter system.

Keywords

Collective behavior Flocking Self-organization Emergent behavior Animal groups 

Supplementary material

10955_2014_1119_MOESM1_ESM.mpg (6.9 mb)
ESM (MPG 7,058 kb)
10955_2014_1119_MOESM2_ESM.mpg (6.9 mb)
ESM (MPG 7,041 kb)
10955_2014_1119_MOESM3_ESM.mpg (5.3 mb)
ESM (MPG 5,463 kb)

References

  1. 1.
    Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)Google Scholar
  2. 2.
    Couzin, I.D.: Self-organization and collective behavior in vertebrates. J. Adv. Study Behav. 32, 1–75 (2003)CrossRefGoogle Scholar
  3. 3.
    Giardina, I.: Collective behavior in animal groups: theoretical models and empirical studies. HFSP J. 2, 205–219 (2008)CrossRefGoogle Scholar
  4. 4.
    Sumpter, D.J.T.: Collective Animal Behavior. Princeton University Press, Princeton (2010)CrossRefMATHGoogle Scholar
  5. 5.
    Cavagna, A., Giardina, I.: Bird Flocks as Condensed Matter. Ann. Rev. Cond. Matt. Phys. (2014). doi:10.1146/annurev-conmatphys-031113-133834
  6. 6.
    Aoki, I.: A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fish. 48, 1081–1088 (1982)CrossRefGoogle Scholar
  7. 7.
    Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Comput. Gr. 21, 25–33 (1987)CrossRefGoogle Scholar
  8. 8.
    Huth, A., Wissel, C.: The simulation of the movement of fish schools. J. Theor. Biol. 156, 365–385 (1992)CrossRefGoogle Scholar
  9. 9.
    Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hildenbrandt, H., Carere, C., Hemelrijk, C.: Self-organized aerial displays of thousands of starlings: a model. Behav. Ecol. 21, 1349–1359 (2010)CrossRefGoogle Scholar
  11. 11.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles Phys. Rev. Lett. 75, 1226–1229 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    Toner, J., Tu, Y.: Long-range order in a two-dimensional dynamical XY model: how birds fly together Phys. Rev. Lett. 75, 4326–4329 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    Grégoire, G., Chaté, H., Tu, Y.: Moving and staying together without a leader. Physica D 181, 157–170 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions: patterns, stability, and collapse. Phys. Rev. Lett. 96, 104302 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Aldana, A., Dossetti, V., Huepe, C., Kenkre, V.M., Larralde, H.: Phase transitions in systems of self-propelled agents and related network models. Phys. Rev. Lett. 98, 095702 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Ginelli, F., Chaté, H.: Relevance of metric-free interactions in flocking phenomena. Phys. Rev. Lett. 105, 168103 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Justh, E.W., Krishnaprasad, P.S.: Equilibria and steering laws for planar formations. Syst. Controls Lett. 52, 25–38 (2004)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Flocking in fixed and switching networks. IEEE Trans. Autom. Control 52, 863–868 (2007)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E 58, 4828–4858 (1998)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517, 71–140 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Ramaswamy, S.: The mechanics and statistics of active matter. Ann. Rev. Cond. Matt. Phys. 1, 301 (2010)CrossRefGoogle Scholar
  23. 23.
    Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.P., Prost, J., et al.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Jelic, A., Melillo, S., Parisi, L., Shen, E., Viale, M.: Information transfer and behavioural inertia in starling flocks. Nat. Phys. 10, 691–696 (2014)CrossRefGoogle Scholar
  25. 25.
    Bialek, W., Cavagna, A., Giardina, I., Mora, T., Silvestri, E., Viale, M., Walczak, A.M.: Statistical mechanics for natural flocks of birds. Proc. Natl. Acad. Sci. USA 109, 4786–4791 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Viale, M.: Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. USA 107, 11865–11870 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. USA 105, 1232–1237 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Tu, Y., Toner, J., Ulm, M.: Sound waves and the absence of galilean invariance in flocks. Phys. Rev. Lett. 80, 4819 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Goldstein, H.: Classical Mechanics. Addison-Wesley Publishing Company, Reading (1980)MATHGoogle Scholar
  30. 30.
    Fetter, A.L., Walecka, J.D.: Theoretical Mechanics of Particles and Continua. Courier Dover Publications, New York (2012)Google Scholar
  31. 31.
    Pomeroy, H., Heppner, F.: Structure of turning in airborne rock dove (Columba livia) flocks. Auk 109, 256–267 (1992)CrossRefGoogle Scholar
  32. 32.
    Cavagna, A., Duarte Queirós, S.M., Giardina, I., Stefanini, F.,Viale, M.: Diffusion of individual birds in starling flocks. Proc. R. Soc. B 280, 20122484 (2013)Google Scholar
  33. 33.
    Matsubara, T., Matsuda, H.: A lattice model of Liquid Helium, I. Prog. Theor. Phys. 16, 569–582 (1956)ADSCrossRefMATHGoogle Scholar
  34. 34.
    Halperin, B.I., Hohenberg, P.C.: Hydrodynamic theory of spin waves. Phys. Rev. 188, 898–918 (1969)ADSCrossRefGoogle Scholar
  35. 35.
    Lane, C.T., Fairbank, H.A., Fairbank, W.M.: Second sound in Liquid Helium II. Phys. Rev. 71, 600–605 (1947)ADSCrossRefGoogle Scholar
  36. 36.
    Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)ADSCrossRefGoogle Scholar
  37. 37.
    Sonin, E.B.: Spin currents and spin superfluidity. Adv. Phys. 59, 181–255 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Justh, E.W., Krishnaprasad, P.S.: Equilibria and steering laws for planar formations. Syst. Controls Lett. 52, 25–38 (2004)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Szabo, P., Nagy, M., Vicsek, T.: Transitions in a self-propelled-particles model with coupling of accelerations. Phys. Rev. E 79, 021908 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Hemelrijk, C.K., Hildenbrandt, H.: Some causes of the variable shape of flocks of birds. PLoS ONE 6, e22479 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Gautrais, J., Ginelli, F., Fournier, R., Blanco, S., Soria, M., Chateé, H., Theraulaz, G.: Deciphering interactions in moving animal groups. Plos Comp. Biol. 8, e1002678 (2012)ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    Sumino, Y., Nagai, K.H., Shitaka, Y., Tanaka, D., Yoshikawa, K., Chaté, H., Oiwa, K.: Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483, 448–452 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)MATHGoogle Scholar
  44. 44.
    Gardiner, C.W.: Handbook of Stochastic Methods, vol. 3. Springer, Berlin (1985)Google Scholar
  45. 45.
    Goldstone, J.: Field theories with Superconductor solutions. Il Nuovo Cimento 19, 154–164 (1961)CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Ramaswamy, S., Simha, R.A.: Hydrodynamics fluctuations and instabilities in ordered suspensions of self- propelled particles. Phys. Rev. Lett. 89, 058101 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    Bertin, E., Droz, M., Gregoire, G.: Boltzmann and hydrodynamic description for self-propelled particles. Phys. Rev. E 74, 022101 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Ihle, T.: Kinetic theory of flocking: derivation of hydrodynamic equations. Phys. Rev. E 83, 030901 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Bialek, W., Cavagna, A., Giardina, I., Mora, T., Pohl, O., Silvestri, E., Viale, M., Walczak, A.M.: Social interactions dominate speed control in poising natural flocks near criticality. Proc. Natl. Acad. Sci. USA 111, 7212–7217 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    Cavagna, A., Giardina, I., Ginelli, I., Mora, T., Piovani, D., Tavarone, R., Walczak, A.: M. Dynamical maximum entropy approach to flocking. Phys. Rev. E 89, 042707 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andrea Cavagna
    • 1
    • 2
    • 3
  • Lorenzo Del Castello
    • 1
    • 2
  • Irene Giardina
    • 1
    • 2
    • 3
  • Tomas Grigera
    • 4
    • 5
  • Asja Jelic
    • 1
    • 2
  • Stefania Melillo
    • 1
    • 2
  • Thierry Mora
    • 6
  • Leonardo Parisi
    • 1
    • 2
    • 7
  • Edmondo Silvestri
    • 1
    • 2
    • 8
  • Massimiliano Viale
    • 1
    • 2
  • Aleksandra M. Walczak
    • 9
  1. 1.Istituto Sistemi Complessi (ISC-CNR)RomeItaly
  2. 2.Dipartimento di Fisica“Sapienza” Universitá di RomaRomeItaly
  3. 3.Initiative for the Theoretical Sciences, The Graduate CenterNew YorkUSA
  4. 4.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) and Departamento de Física, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  5. 5.CONICET La Plata, Consejo Nacional de Investigaciones Científicas y TécnicasLa PlataArgentina
  6. 6.Laboratoire de Physique Statistique de l’École Normale SupérieureCNRS and Universites Paris VI and Paris VIIParis Cedex 05France
  7. 7.Dipartimento di Informatica“Sapienza” Universitá di RomaRomeItaly
  8. 8.Dipartimento di Matematica e FisicaUniversitá Roma TreRomeItaly
  9. 9.Laboratoire de Physique Théorique de l’École Normale SupérieureCNRS and University Paris VIParis Cedex 05France

Personalised recommendations